Solveeit Logo

Question

Question: For the reaction H2(g) + I2(g) <img src="https://cdn.pureessence.tech/canvas_387.png?top_left_x=1651...

For the reaction H2(g) + I2(g) 2HI(g)

A

Δ\Delta H = + ve

B

Δ\DeltaH = – ve

C

Δ\DeltaH = zero

D

Δ\DeltaH sign cannot be determined

Answer

Δ\DeltaH = – ve

Explanation

Solution

at point — A

Q=[Pr oduct ][Reactant]=0\mathrm { Q } = \frac { [ \operatorname { Pr } \text { oduct } ] } { [ \operatorname { Re } \operatorname { ac } \tan t ] } = 0

So, Q have minimum value at point A.

(II) at point [N2O4] = [NO2] = 0.1 M

Q=[NO2]2[ N2O4]=0.1×0.10.1=0.1\mathrm { Q } = \frac { \left[ \mathrm { NO } _ { 2 } \right] ^ { 2 } } { \left[ \mathrm {~N} _ { 2 } \mathrm { O } _ { 4 } \right] } = \frac { 0.1 \times 0.1 } { 0.1 } = 0.1

Q < Kc

H2(g) + I2(g) 2HI(g)

logK2 K1=ΔH2.303[1 T11 T2]\log \frac { \mathrm { K } _ { 2 } } { \mathrm {~K} _ { 1 } } = \frac { \Delta \mathrm { H } } { 2.303 } \left[ \frac { 1 } { \mathrm {~T} _ { 1 } } - \frac { 1 } { \mathrm {~T} _ { 2 } } \right]

log5066.9=ΔH2.303[16231721]\log \frac { 50 } { 66.9 } = \frac { \Delta \mathrm { H } } { 2.303 } \left[ \frac { 1 } { 623 } - \frac { 1 } { 721 } \right]

After calculation negative value of Δ\Delta H is obtained.B