Solveeit Logo

Question

Chemistry Question on Equilibrium

For the reaction, H2+I22HI,K=47.6.H_{2} + I_{2} {\rightleftharpoons} 2HI, K= 47.6. If the initial number of moles of each reactant and product is 1 mole then at equilibrium

A

[I2]=[H2],[I2]>[HI]\left[I_{2}\right]=\left[H_{2}\right], \left[I_{2}\right] > \left[HI\right]

B

[I2]=[H2],[I2]<[HI]\left[I_{2}\right]=\left[H_{2}\right], \left[I_{2}\right] < \left[HI\right]

C

$\left[I_{2}\right]

D

[I2]>[H2],[I2]=[HI]\left[I_{2}\right]>\left[H_{2}\right], \left[I_{2}\right] = \left[HI\right]

Answer

[I2]=[H2],[I2]<[HI]\left[I_{2}\right]=\left[H_{2}\right], \left[I_{2}\right] < \left[HI\right]

Explanation

Solution

For the given reaction, K=[HI]2[H2][I2]K = \frac{\left[HI\right]^{2}}{\left[H_{2}\right]\left[I_{2}\right]} As 1 mole of H2_2 reacts with 1 mole of I2_2, even at equilibrium, [H2]=[I2][H_2] = [I_2] Hence, K=[HI]2[I2]2K = \frac{\left[HI\right]^{2}}{\left[I_{2}\right]^{2}}\quad orK=[HI][I2]=47.6\quad\sqrt{K}=\frac{\left[HI\right]}{\left[I_{2}\right]}=\sqrt{47.6} i.e., [HI]>[I2]\left[HI\right]>\left[I_{2}\right]