Solveeit Logo

Question

Question: For the reaction, following data is given, A → B; $K₁ = 10¹⁴ × e^(⁻¹⁵⁰⁰/T)$ C → D; $K₂ = 10¹² × e^(⁻...

For the reaction, following data is given, A → B; K1=1014×e1500/T)K₁ = 10¹⁴ × e^(⁻¹⁵⁰⁰/T) C → D; K2=1012×e1000/T)K₂ = 10¹² × e^(⁻¹⁰⁰⁰/T) The temperature at which K1=K2K₁ = K₂ is:

A

118.55 K

B

108.55 K

C

468.4 K

D

434.22 K

Answer

108.55 K

Explanation

Solution

We are given the rate constants for two reactions as: K1=1014×e1500/TK₁ = 10^{14} \times e^{-1500/T} K2=1012×e1000/TK₂ = 10^{12} \times e^{-1000/T}

We need to find the temperature T at which K1=K2K₁ = K₂. Set the two expressions for K equal to each other: 1014×e1500/T=1012×e1000/T10^{14} \times e^{-1500/T} = 10^{12} \times e^{-1000/T}

Divide both sides by 101210^{12}: 102×e1500/T=e1000/T10^2 \times e^{-1500/T} = e^{-1000/T}

Take the natural logarithm of both sides: ln(102)+ln(e1500/T)=ln(e1000/T)\ln(10^2) + \ln(e^{-1500/T}) = \ln(e^{-1000/T}) 2ln(10)1500T=1000T2 \ln(10) - \frac{1500}{T} = -\frac{1000}{T}

Rearrange the terms to solve for T: 2ln(10)=1500T1000T2 \ln(10) = \frac{1500}{T} - \frac{1000}{T} 2ln(10)=500T2 \ln(10) = \frac{500}{T}

Now, solve for T: T=5002ln(10)T = \frac{500}{2 \ln(10)}

Using the approximate value ln(10)2.3026\ln(10) \approx 2.3026: T=5002×2.3026=5004.6052108.57T = \frac{500}{2 \times 2.3026} = \frac{500}{4.6052} \approx 108.57 K

The closest option is 108.55 K.