Solveeit Logo

Question

Question: Using data given in table find out incorrect statement(s) among the following. $CO(g) + \frac{1}{2}...

Using data given in table find out incorrect statement(s) among the following.

CO(g)+12O2(g)CO2(g)CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)

Assume vibration modes of motion do not contribute to heat capacity at low temperature.

A

ΔH>ΔU\Delta H^\circ > \Delta U^\circ for the reaction at 298K.

B

In standard state condition, the reaction CO(g)+12O2(g)CO2(g)CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) attain equilibrium at very high temperature.

C

At low temperature d(ΔH)dT=ive\frac{d(\Delta H)^\circ}{dT} = -ive

D

In a CO,O2CO, O_2 fuel cell electrical energy obtained by cell >ΔHcombustion[CO(g)]> |\Delta H^\circ_{combustion}[CO(g)]|

Answer

A, D

Explanation

Solution

The reaction is CO(g)+12O2(g)CO2(g)CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g).

(A) ΔH>ΔU\Delta H^\circ > \Delta U^\circ for the reaction at 298K. The relationship between ΔH\Delta H^\circ and ΔU\Delta U^\circ is ΔH=ΔU+ΔngRT\Delta H^\circ = \Delta U^\circ + \Delta n_g RT, where Δng\Delta n_g is the change in the number of moles of gas. For the given reaction, Δng=moles of gaseous productsmoles of gaseous reactants=1(1+12)=132=12\Delta n_g = \text{moles of gaseous products} - \text{moles of gaseous reactants} = 1 - (1 + \frac{1}{2}) = 1 - \frac{3}{2} = -\frac{1}{2}. At 298K, R and T are positive. Thus, ΔngRT=12RT\Delta n_g RT = -\frac{1}{2} RT is negative. ΔHΔU=ΔngRT<0\Delta H^\circ - \Delta U^\circ = \Delta n_g RT < 0, which means ΔH<ΔU\Delta H^\circ < \Delta U^\circ. Therefore, the statement ΔH>ΔU\Delta H^\circ > \Delta U^\circ is incorrect.

(B) In standard state condition, the reaction CO(g)+12O2(g)CO2(g)CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) attain equilibrium at very high temperature. For equilibrium, ΔG=0\Delta G^\circ = 0. ΔG=ΔHTΔS\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ. The equilibrium temperature is Teq=ΔHΔST_{eq} = \frac{\Delta H^\circ}{\Delta S^\circ}. Using the given data: ΔH=ΔHf(CO2)[ΔHf(CO)+12ΔHf(O2)]=395[110+12(0)]=395+110=285kJ/mol\Delta H^\circ = \Delta H_f^\circ(CO_2) - [\Delta H_f^\circ(CO) + \frac{1}{2}\Delta H_f^\circ(O_2)] = -395 - [-110 + \frac{1}{2}(0)] = -395 + 110 = -285 \, \text{kJ/mol}. ΔS=S(CO2)[S(CO)+12S(O2)]=213[197+12(205)]=213[197+102.5]=213299.5=86.5J/K mol=0.0865kJ/K mol\Delta S^\circ = S^\circ(CO_2) - [S^\circ(CO) + \frac{1}{2}S^\circ(O_2)] = 213 - [197 + \frac{1}{2}(205)] = 213 - [197 + 102.5] = 213 - 299.5 = -86.5 \, \text{J/K mol} = -0.0865 \, \text{kJ/K mol}. Teq=285kJ/mol0.0865kJ/K mol3294.8KT_{eq} = \frac{-285 \, \text{kJ/mol}}{-0.0865 \, \text{kJ/K mol}} \approx 3294.8 \, \text{K}. Since the equilibrium temperature is very high, the statement is true.

(C) At low temperature d(ΔH)dT=ive\frac{d(\Delta H)^\circ}{dT} = -ive. According to Kirchhoff's law, d(ΔH)dT=ΔCp\frac{d(\Delta H)^\circ}{dT} = \Delta C_p^\circ. At low temperature, assuming only translational and rotational contributions to heat capacity for ideal gases: For linear molecules (CO, O2O_2, CO2CO_2), Cp=CV+R=(32R+R)+R=52R+R=72RC_p = C_V + R = (\frac{3}{2}R + R) + R = \frac{5}{2}R + R = \frac{7}{2}R (translational + rotational + R). Or, using degrees of freedom: CV=f2RC_V = \frac{f}{2}R, Cp=CV+RC_p = C_V + R. Translational degrees of freedom = 3 for all gases. Rotational degrees of freedom = 2 for linear molecules. CV(linear)=32R+22R=52RC_V(\text{linear}) = \frac{3}{2}R + \frac{2}{2}R = \frac{5}{2}R. Cp(linear)=52R+R=72RC_p(\text{linear}) = \frac{5}{2}R + R = \frac{7}{2}R. ΔCp=Cp(CO2)[Cp(CO)+12Cp(O2)]=72R[72R+12(72R)]=72R72R74R=74R\Delta C_p^\circ = C_p(CO_2) - [C_p(CO) + \frac{1}{2}C_p(O_2)] = \frac{7}{2}R - [\frac{7}{2}R + \frac{1}{2}(\frac{7}{2}R)] = \frac{7}{2}R - \frac{7}{2}R - \frac{7}{4}R = -\frac{7}{4}R. Since R is positive, ΔCp\Delta C_p^\circ is negative. So, d(ΔH)dT=ΔCp\frac{d(\Delta H)^\circ}{dT} = \Delta C_p^\circ is negative. The statement is true.

(D) In a CO,O2CO, O_2 fuel cell electrical energy obtained by cell >ΔHcombustion[CO(g)]> |\Delta H^\circ_{combustion}[CO(g)]|. The maximum electrical work obtained from a fuel cell operating reversibly at constant temperature and pressure is given by ΔG-\Delta G^\circ. The enthalpy of combustion of CO is ΔHcombustion[CO(g)]=ΔH=285kJ/mol\Delta H^\circ_{combustion}[CO(g)] = \Delta H^\circ = -285 \, \text{kJ/mol}. ΔHcombustion[CO(g)]=285=285kJ/mol|\Delta H^\circ_{combustion}[CO(g)]| = |-285| = 285 \, \text{kJ/mol}. The electrical energy obtained is ΔG=(ΔHTΔS)=ΔH+TΔS-\Delta G^\circ = -(\Delta H^\circ - T \Delta S^\circ) = -\Delta H^\circ + T \Delta S^\circ. We need to check if ΔH+TΔS>ΔH-\Delta H^\circ + T \Delta S^\circ > -\Delta H^\circ. This inequality simplifies to TΔS>0T \Delta S^\circ > 0. We calculated ΔS=86.5J/K mol\Delta S^\circ = -86.5 \, \text{J/K mol}. At any positive temperature T, TΔST \Delta S^\circ will be negative. Since TΔS<0T \Delta S^\circ < 0, it means ΔH+TΔS<ΔH-\Delta H^\circ + T \Delta S^\circ < -\Delta H^\circ. So, the electrical energy obtained is less than the magnitude of the enthalpy of combustion. The statement is incorrect.

The incorrect statements are (A) and (D).