Solveeit Logo

Question

Question: For the reaction \( {{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{...

For the reaction CO(g)+12O2(g)CO2(g){{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}} , what is the value of Kc/KP{{{K}}_{{c}}}{{/}}{{{K}}_{{P}}} ?
(A) RT{{RT}}
(B) (RT)1{{{(RT)}}^{ - 1}}
(C) (RT)12{{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}
(D) (RT)12{{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}}

Explanation

Solution

In the above question, the reaction is given and we have to find out the ratio Kc/KP{{{K}}_{{c}}}{{/}}{{{K}}_{{P}}} . Since, change in moles of gas can be found out from the reaction, we can find the ratio by using the relationship between Kc{{{K}}_{{c}}} and Kp{{{K}}_{{p}}} .

Formula Used
Kp=Kc(RT)Δn{{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}}
Where Kp{{{K}}_{{p}}} = equilibrium constant considering the partial pressure
Kc{{{K}}_{{c}}} = equilibrium constant considering the concentration
R = universal gas constant
T= temperature
Δn{{\Delta n}} = change in number of moles of gas.

Complete step by step solution:
Kp{{{K}}_{{p}}} is the equilibrium constant which is calculated from the partial pressures of the reaction. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
Kc{{{K}}_{{c}}} is the equilibrium constant which is calculated from the concentration of the reaction. It is used to express the relationship between product concentration and reactant concentration. It is also a unitless number.
In the above question, we have the following reaction:
CO(g)+12O2(g)CO2(g){{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}}
Here, Δn{{\Delta n}} can be calculated as:
Δn{{\Delta n}} = number of moles of gaseous product – number of moles of gaseous reactant
Hence,
Δn{{\Delta n}} = 1(1+12)=121 - \left( {1 + \dfrac{1}{2}} \right) = - \dfrac{1}{2}
Now we can use the relation:
Kp=Kc(RT)Δn{{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}}
Substituting the value, we get:
Kp=Kc(RT)12{{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}
Rearranging the equation, we get:
KpKc=(RT)12\dfrac{{{{{K}}_{{p}}}}}{{{{{K}}_{{c}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}
Reciprocating both the sides we get:
KcKp=(RT)12\dfrac{{{{{K}}_{{c}}}}}{{{{{K}}_{{p}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{1}}}{{{2}}}}}
\therefore The value of Kc/Kp{{{K}}_{{c}}}{{/}}{{{K}}_{{p}}} is (RT)12{{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}} .
Hence, the correct option is option D.

Note:
When Δn{{\Delta n}} =0 , the value of Kp=Kc{{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}
While calculating the values of Kp{{{K}}_{{p}}} and Kc{{{K}}_{{c}}} using the above formula, we should have the unit of R in L.atmmol.K\dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} , i.e., the value of R is equal to 0.08206L.atmmol.K{{0}}{{.08206}}\dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} and the temperature should be in kelvin(K).