Solveeit Logo

Question

Question: For the reaction at 300 K, ; The value of is:...

For the reaction at 300 K, ; The value of is:

A

-32.6 kJ/mol

B

-59.6 kJ/mol

C

-92.2 kJ/mol

D

27.0 kJ/mol

Answer

-32.6 kJ/mol

Explanation

Solution

The Gibbs free energy change (ΔG\Delta G^\circ) is calculated using the equation: ΔG=ΔHTΔS\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ Given: T=300T = 300 K ΔH=92.2\Delta H^\circ = -92.2 kJ/mol ΔS=198.7\Delta S^\circ = -198.7 J/mol·K

First, convert ΔS\Delta S^\circ to kJ/mol·K: ΔS=198.7 J/mol\cdotpK×1 kJ1000 J=0.1987 kJ/mol\cdotpK\Delta S^\circ = -198.7 \text{ J/mol·K} \times \frac{1 \text{ kJ}}{1000 \text{ J}} = -0.1987 \text{ kJ/mol·K}

Now, substitute the values into the Gibbs free energy equation: ΔG=(92.2 kJ/mol)(300 K)×(0.1987 kJ/mol\cdotpK)\Delta G^\circ = (-92.2 \text{ kJ/mol}) - (300 \text{ K}) \times (-0.1987 \text{ kJ/mol·K}) ΔG=92.2 kJ/mol(59.61 kJ/mol)\Delta G^\circ = -92.2 \text{ kJ/mol} - (-59.61 \text{ kJ/mol}) ΔG=92.2 kJ/mol+59.61 kJ/mol\Delta G^\circ = -92.2 \text{ kJ/mol} + 59.61 \text{ kJ/mol} ΔG=32.59 kJ/mol\Delta G^\circ = -32.59 \text{ kJ/mol}

Considering significant figures, ΔH\Delta H^\circ has one decimal place (-92.2) and TΔST\Delta S^\circ calculated as 300×0.1987=59.61300 \times -0.1987 = -59.61. When multiplying, we consider the least number of significant figures. Assuming 300 K has 3 significant figures, the result of TΔST\Delta S^\circ should also be rounded to 3 significant figures, which is -59.6 kJ/mol.

Performing the subtraction with appropriate decimal places: ΔG=92.2 kJ/mol(59.6 kJ/mol)\Delta G^\circ = -92.2 \text{ kJ/mol} - (-59.6 \text{ kJ/mol}) ΔG=92.2 kJ/mol+59.6 kJ/mol\Delta G^\circ = -92.2 \text{ kJ/mol} + 59.6 \text{ kJ/mol} ΔG=32.6 kJ/mol\Delta G^\circ = -32.6 \text{ kJ/mol}