Solveeit Logo

Question

Question: For the reaction \(AB(g)\) ⇌ \(A(g) + B(g)\), *AB* is 33% dissociated at a total pressure of *P*. T...

For the reaction AB(g)AB(g)A(g)+B(g)A(g) + B(g), AB is 33%

dissociated at a total pressure of P. Then

A

P=KpP = K_{p}

B

P=4KpP = 4K_{p}

C

P=3KpP = 3K_{p}

D

p=8kpp = 8k_{p}

Answer

p=8kpp = 8k_{p}

Explanation

Solution

AB(g)11/32/3\underset{2/3}{\underset{- 1/3}{\underset{1}{AB(g)}}}A(g)0+1/31/3+B(g)0+1/31/3\underset{1/3}{\underset{+ 1/3}{\underset{0}{A(g)}}} + \underset{1/3}{\underset{+ 1/3}{\underset{0}{B(g)}}}

(n)eq/m=23+13+13=43\left( \mathbf{\sum}\mathbf{n} \right)_{\mathbf{eq/m}}\mathbf{=}\frac{\mathbf{2}}{\mathbf{3}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{3}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{3}}\mathbf{=}\frac{\mathbf{4}}{\mathbf{3}}

kp=PAPBPAB=1/34/3P1/34/3P2/34/3P=18P\mathbf{k}_{\mathbf{p}}\mathbf{=}\frac{\mathbf{P}_{\mathbf{A}}\mathbf{P}_{\mathbf{B}}}{\mathbf{P}_{\mathbf{AB}}}\mathbf{=}\frac{\frac{\mathbf{1/3}}{\mathbf{4/3}}\mathbf{P}\frac{\mathbf{1/3}}{\mathbf{4/3}}\mathbf{P}}{\frac{\mathbf{2/3}}{\mathbf{4/3}}\mathbf{P}}\mathbf{=}\frac{\mathbf{1}}{\mathbf{8}}\mathbf{P}

P=8Kp\mathbf{P = 8}\mathbf{K}_{\mathbf{p}}