Solveeit Logo

Question

Question: For the reaction \(AB(g)\rightleftarrows A(g)+B(g)\) , AB is **33%** dissociated at a total pressure...

For the reaction AB(g)A(g)+B(g)AB(g)\rightleftarrows A(g)+B(g) , AB is 33% dissociated at a total pressure of P, therefore is related to KP{{K}_{P}} by one of the following options-
(A) P=KPP={{K}_{P}}
(B) P=3KPP=3{{K}_{P}}
(C) P=4KPP=4{{K}_{P}}
(D) P=8KPP=8{{K}_{P}}

Explanation

Solution

First find no. of moles at equilibrium to calculate partial pressures of gases AB, A and B. Then use formula Kp=PA×PBPAB{{K}_{p}}=\dfrac{{{P}_{A}}\times {{P}_{B}}}{{{P}_{AB}}} to calculate equilibrium constant at constant pressure.

Complete answer:
33% dissociation of AB means out of one mole of AB 13\dfrac{1}{3}​ mole is dissociated.

| AB(g)AB(g) | \rightleftarrows | A(g)A(g) | B(g)B(g)
---|---|---|---|---
No. of moles initially| 1| | 0| 0
No. of moles at equilibrium| 1131-\dfrac{1}{3} | | 13\dfrac{1}{3} | 13\dfrac{1}{3}

Total no. of moles =(113)+13+13=43=(1-\dfrac{1}{3})+\dfrac{1}{3}+\dfrac{1}{3}=\dfrac{4}{3}
As we know that partial pressure of a gas in a mixture of gases is given by the formula-
PA=XAPTotal{{P}_{A}}={{X}_{A}}{{P}_{Total}}
Where PA={{P}_{A}}= partial pressure of gas A
XA={{X}_{A}}= Mole fraction of gas A=no. of moles of gas ATotal no. of moles of gases=\dfrac{no\text{. of moles of gas A}}{\text{Total no}\text{. of moles of gases}}
PTotal={{P}_{Total}}= total pressure of mixture.
partial pressure of gas AB=PAB=2/34/3PTotal=12PTotal={{P}_{AB}}=\dfrac{2/3}{4/3}{{P}_{Total}}=\dfrac{1}{2}{{P}_{Total}}
partial pressure of gas A=PA=1/34/3PTotal=14PTotal={{P}_{A}}=\dfrac{1/3}{4/3}{{P}_{Total}}=\dfrac{1}{4}{{P}_{Total}}
partial pressure of gas B=PB=1/34/3PTotal=14PTotal={{P}_{B}}=\dfrac{1/3}{4/3}{{P}_{Total}}=\dfrac{1}{4}{{P}_{Total}}
As we know that
Kp=PA×PBPAB{{K}_{p}}=\dfrac{{{P}_{A}}\times {{P}_{B}}}{{{P}_{AB}}} (i)
Where Kp={{K}_{p}}= equilibrium constant at constant pressure.
Putting all the values in equation (i), we get
Kp=14PTotal×14PTotal12PTotal=18PTotal PTotal=8Kp \begin{aligned} & {{K}_{p}}=\dfrac{\dfrac{1}{4}{{P}_{Total}}\times \dfrac{1}{4}{{P}_{Total}}}{\dfrac{1}{2}{{P}_{Total}}}=\dfrac{1}{8}{{P}_{Total}} \\\ & {{P}_{Total}}=8{{K}_{p}} \\\ \end{aligned}

Hence the correct option is (D) P=8KPP=8{{K}_{P}}.

Note:
Equilibrium constants are defined as the ratio of concentrations at equilibrium for a reaction at a specific temperature. When we use the symbol KC{{K}_{C}}the subscript c means that all concentrations are being expressed in terms of molar concentration. When the reactants and products are gases, we can determine the equilibrium constant in terms of partial pressures where Kp={{K}_{p}}= equilibrium constant at constant pressure.