Solveeit Logo

Question

Question: For the reaction $3A(g) \xrightarrow{k} B(g) + C(g)$ k is $10^{-4}L/mol.min$. If $[A] = 0.5M$ then t...

For the reaction 3A(g)kB(g)+C(g)3A(g) \xrightarrow{k} B(g) + C(g) k is 104L/mol.min10^{-4}L/mol.min. If [A]=0.5M[A] = 0.5M then the value of d[A]dt(in ms1)-\frac{d[A]}{dt} (in \ ms^{-1}) is:

A

7.5 x 10510^{-5}

B

3 x 10410^{-4}

C

2.5 x 10510^{-5}

D

1.25 x 10610^{-6}

Answer

1.25 x 10610^{-6} M/s

Explanation

Solution

Solution:

  1. Determine the rate law:
    The given rate constant k=104L/(molmin)k = 10^{-4}\,L/(mol\cdot min) has units of Lmol1min1L\,mol^{-1}\,min^{-1}. For a rate law of the form

    Rate=k[A]n,\text{Rate} = k[A]^n,

    we require the overall order n=2n=2 (since for a second-order reaction, the units of kk are Lmol1min1L\,mol^{-1}\,min^{-1}). Thus, the reaction is second order in [A][A] even though the stoichiometric coefficient is 3.

  2. Relate the reaction rate to the disappearance of AA:
    For the elementary reaction

    3AB+C,3A \longrightarrow B + C,

    the rate of the reaction is given by

    Rate=13d[A]dt.\text{Rate} = -\frac{1}{3} \frac{d[A]}{dt}.

    Equate this with the rate law:

    k[A]2=13d[A]dtd[A]dt=3k[A]2.k[A]^2 = -\frac{1}{3}\frac{d[A]}{dt} \quad \Longrightarrow \quad -\frac{d[A]}{dt} = 3k[A]^2.
  3. Substitute the given values:
    With [A]=0.5M[A] = 0.5\,M:

    d[A]dt=3×104×(0.5)2=3×104×0.25=7.5×105M/min.-\frac{d[A]}{dt} = 3\times10^{-4}\times (0.5)^2 = 3\times10^{-4}\times 0.25 = 7.5\times10^{-5}\, \text{M/min}.
  4. Convert the rate to Moles per Liter per Second (M/s):
    Since 1min=60s1\,min = 60\,s,

    7.5×105M/min=7.5×10560M/s=1.25×106M/s.7.5\times10^{-5}\, \text{M/min} = \frac{7.5\times10^{-5}}{60}\, \text{M/s} = 1.25\times10^{-6}\, \text{M/s}.