Solveeit Logo

Question

Question: For the reaction \(2NH_{3} \rightarrow N_{2} + 3H_{2}\)if \(- \frac { \mathrm { d } \left[ \mathrm {...

For the reaction 2NH3N2+3H22NH_{3} \rightarrow N_{2} + 3H_{2}if d[NH3]dt=- \frac { \mathrm { d } \left[ \mathrm { NH } _ { 3 } \right] } { \mathrm { dt } } = d[N2]dt=k2[NH3],d[H2]dt=k3[NH3]\frac{d\lbrack N_{2}\rbrack}{dt} = k_{2}\lbrack NH_{3}\rbrack,\frac{d\lbrack H_{2}\rbrack}{dt} = k_{3}\lbrack NH_{3}\rbrack

Then the relation between k1,k2k_{1},k_{2} and k3k_{3} is

A

k1=k2=k3k_{1} = k_{2} = k_{3}

B

k1=3k2=2k3k_{1} = 3k_{2} = 2k_{3}

C

1.5k1=3k2=k31.5k_{1} = 3k_{2} = k_{3}

D

2k1=k2=3k32k_{1} = k_{2} = 3k_{3}

Answer

1.5k1=3k2=k31.5k_{1} = 3k_{2} = k_{3}

Explanation

Solution

2NH3N2+3H22NH_{3}\overset{\quad\quad}{\rightarrow}N_{2} + 3H_{2}

Rate = 12d[NH3]dt=d[N2]dt=13ddt- \frac{1}{2}\frac{d\lbrack NH_{3}\rbrack}{dt} = \frac{d\lbrack N_{2}\rbrack}{dt} = \frac{1}{3}\frac{d}{dt}

12k1[NH3]=k2[NH3]=13k3[NH3]\frac{1}{2}k_{1}\lbrack NH_{3}\rbrack = k_{2}\lbrack NH_{3}\rbrack = \frac{1}{3}k_{3}\lbrack NH_{3}\rbrack

1.5k1=3k2=k31.5k_{1} = 3k_{2} = k_{3}