Question
Question: For the reaction, \[{{2N}}{{{H}}_{{3}}}\left( {{g}} \right) \to {{{N}}_{{2}}}\left( {{g}} \right){{ ...
For the reaction, 2NH3(g)→N2(g)+3H2(g), what is the percentage of NH3 converted, if the mixture diffuses twice fast as that of SO2 under similar conditions?
A) 3.125%
B) 31.25%
C) 6.25%
D) None of these
Solution
Diffusion is the process of the movement of the substance from the high concentration to the lower concentration. In the case of the diffusion of the gases, gas molecules are moved from the higher concentration to the lower gas concentration. The mass of the gas molecules, temperature affect the diffusion of the gases. The higher the mass lower is the rate of diffusion and vice versa. An increase in the temperature increases the kinetic energy of the gas molecules leads to an increase in the rate of diffusion.
Formula Used: The mathematical expression of Graham’s Law is given as follows:
R2R1=M1M2
Complete step-by-step answer:
The mathematical representation of Graham’s Law of diffusion is given as follows:
RαM1
If there are two gases one with the rate of diffusion is R1, and its molecular weight is M1, the rate of diffusion of another gas is R2, and its molecular weight is M2.
R2R1=M1M2
Here, in the question, the rate of the diffusion of the gas mixture is twice that of the rate of diffusion of SO2. The molecular weight of the gas SO2 is 64gmol−1.
Now, use Graham’s law of diffusion,
⇒RSO2Rmix=MmixMSO2
⇒Rmix=2RSO2 and MSO2=64gmol−1
⇒RSO22×RSO2=Mmix64
⇒Mmix=264
⇒Mmix=4
⇒Mmix=16
Here, we can see that the molecular weight of the mixture obtained is 16 units.
Now, here to determine the percentage of the ammonia converted used the balanced chemical reaction given in the question.
2NH3(g)→N2(g)+3H2(g)
2NH3(g)→N2(g)+3H2(g)
Initial moles | 2 | 0 | 0 | total |
---|---|---|---|---|
Equilibrium moles | 2-2x | x | 3x | |
Total moles | 2-2x+ | x+ | 3x+ | =2+2x |
Mole fraction | 2+2x2−2x | 2+2xx | 2+2x3x |
The molar mass of the mixture is equal to the sum of the product of the molar mass of each component and the mole fraction of that component.
⇒2+2x17(2−2x)+28(x)+2(3x)=16
⇒(34−34x)+(28x)+(6x)=16(2+2x)
⇒x=161
Here, moles of ammonia converted is given as 2x therefore the percentage of the ammonia converted is determined by taking the ratio of moles converted into the products to the initial moles.
⇒percentageofammoniaconveted=Initialmolesmolesconvertedintoproducts×100%
⇒percentageofammoniaconveted=22x×100%
Now, here substitute the value of x.
⇒percentageofammoniaconveted=22×161×100%
⇒percentageofammoniaconveted=6.25%
Thus, the percentage of ammonia converted is 6.25%. Therefore, option (C) is the correct answer to the given question.
Note: In the case of the diffusion of the gases, Graham’s Law of diffusion is used. This law was given by Thomas Graham when he has studied the behavior of gases. As per Graham’s law, the rate of gas diffusion is inversely proportional to the square root of the density or molecular weight of the gas.