Solveeit Logo

Question

Chemistry Question on Equilibrium Constant

For the reaction, 2A(g)+B2(g)2AB2(g)2 A(g)+B_{2}(g) \rightleftharpoons 2 A B_{2}(g) the equilibrium constant, KpK_{p} at 300K300\, K is 16.016.0. The value of KpK_{p} for AB2(g)A(g)+1/2B2(g)A B_{2}(g) \rightleftharpoons A(g)+1 / 2 B_{2}(g) is

A

8

B

0.25

C

0.125

D

32

Answer

0.25

Explanation

Solution

For the reaction,
2A+B22AB2,2 A+B_{2} \rightleftharpoons 2 A B_{2},
Equilibrium constant,
Kp=pAB22pA2pB2=16K_{p}=\frac{p_{A B_{2}}^{2}}{p_{A}^{2} \cdot p_{B_{2}}}=16 ... (i)
For the reaction,
AB2A+1/2B2,A B_{2} \rightleftharpoons A+1 / 2 B_{2},
Kp=PApB21/2pAB2K_{p}'=\frac{P_{A} \cdot p_{B_{2}}^{1 / 2}}{p_{A B_{2}}} ...(ii)
On squaring E (ii), we get
(Kp)2=pA2pB2pAB22\left(K_{p}'\right)^{2}=\frac{p_{A}^{2} p_{B_{2}}}{p_{A B_{2}}^{2}} ...(iii)
From E (i) and (iii), we get
Kp(Kp)2=1K_{p} \cdot\left(K_{p}^{\prime}\right)^{2}=1
16(Kp)2=116 \cdot\left(K_{p}^{\prime}\right)^{2}=1
(Kp)2=116\left(K_{p}'\right)^{2}=\frac{1}{16}
Kp=14=0.25K_{p}'=\frac{1}{4}=0.25