Solveeit Logo

Question

Question: For the prism shown in the figure, the angle of incidence is adjusted such that the emergent ray suf...

For the prism shown in the figure, the angle of incidence is adjusted such that the emergent ray suffers minimum deviation, δm=60\delta_m=60^\circ. The relative refractive index with respect to the medium in which it is kept is μ\mu. Choose the correct option(s).

A

im=60i_m=60^\circ

B

rm=45r_m=45^\circ

C

μ=3+12\mu=\frac{\sqrt{3}+1}{2}

D

μ=3+122\mu=\frac{\sqrt{3}+1}{2\sqrt{2}}

Answer

rm=45r_m=45^\circ, μ=3+12\mu=\frac{\sqrt{3}+1}{2}

Explanation

Solution

The prism angle is A=90A = 90^\circ. For minimum deviation, A=2rmA = 2r_m, so 90=2rm90^\circ = 2r_m, which gives rm=45r_m = 45^\circ. The minimum deviation formula is δm=2imA\delta_m = 2i_m - A. Given δm=60\delta_m = 60^\circ and A=90A = 90^\circ, we have 60=2im9060^\circ = 2i_m - 90^\circ, so 2im=1502i_m = 150^\circ, and im=75i_m = 75^\circ. Using Snell's Law, μ=sinimsinrm=sin75sin45\mu = \frac{\sin i_m}{\sin r_m} = \frac{\sin 75^\circ}{\sin 45^\circ}. We know that sin75=sin(45+30)=sin45cos30+cos45sin30=1232+1212=3+122\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ = \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{\sqrt{3}+1}{2\sqrt{2}}. And sin45=12\sin 45^\circ = \frac{1}{\sqrt{2}}. Therefore, μ=3+12212=3+12\mu = \frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{1}{\sqrt{2}}} = \frac{\sqrt{3}+1}{2}.