Solveeit Logo

Question

Question: For the principal values, evaluate \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}...

For the principal values, evaluate tan1(1)+cos1(12){{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right).

Explanation

Solution

To solve the question given above, first we will draw the rough graphs of y=tan1(x)y={{\tan }^{-1}}\left( x \right) and y=cos1(x)y={{\cos }^{-1}}\left( x \right) and we will determine the nature of these graphs. Then we will find the value of tan1(1){{\tan }^{-1}}\left( -1 \right) in terms of tan1(1){{\tan }^{-1}}\left( 1 \right). And the values of cos1(12){{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right) in terms of cos1(12){{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right). After that, we will find the value of tan1(1)+cos1(12){{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right) by putting the respective values.

Complete step-by-step answer:
Before solving the question, we must know what is the nature of tan1(x){{\tan }^{-1}}\left( x \right) and cos1(x){{\cos }^{-1}}\left( x \right). For determining the nature of these inverse trigonometric functions, we will draw their respective graphs. The graph of tan1x{{\tan }^{-1}}x is:

From the above graphs, we can see that the function tan1(x){{\tan }^{-1}}\left( x \right) is an odd function. If a function f(x)f\left( x \right) is an odd function then we have the following relation:
So, tan1(x)=tan1(x){{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)
Now, we will draw the graph of cos1(x){{\cos }^{-1}}\left( x \right):

We can see from the above graph that cos1(x)=πcos1(x){{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right).
Now, we will find the value of tan1(1){{\tan }^{-1}}\left( -1 \right). We know that,
We have shown above that tan1(x)=tan1(x){{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) so using this relation in solving tan1(1){{\tan }^{-1}}\left( -1 \right) we get,
tan1(1)=tan1(1){{\tan }^{-1}}\left( -1 \right)=-{{\tan }^{-1}}\left( 1 \right)…………. Eq. (1)
We know that, the principal value for tan1(1){{\tan }^{-1}}\left( 1 \right) is equal to:
π4\dfrac{\pi }{4}
So, substituting this principal value in eq. (1) we get,
tan1(1)=π4{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}……… Eq. (2)
Now, we will find the value of cos1(12){{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right). We have shown above the following relation:
cos1(x)=πcos1(x){{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right) so using this relation in cos1(12){{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right) we get,
cos1(12)=πcos1(12){{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)……… Eq. (3)
We know that the principal value for:
cos1(12)=π4{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}
On putting the value of cos1(12){{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right) in eq. (3), we will get:
cos1(12)=ππ4{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -\dfrac{\pi }{4}
cos1(12)=3π4\Rightarrow {{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{3\pi }{4} ……… Eq. (4)
Now, we will add equations (2) and (4). After doing this, we will get:

& {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{-\pi }{4}+\dfrac{3\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2} \\\ \end{aligned}$$ **Note:** The above question can be solved in an alternate way as shown: We know that $$\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$$$$\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$$. Now, we can also say that, $${{\cot }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}$$. Now, $${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( 1 \right)$$. Now, we will subtract $$\pi $$ on both sides. Thus we will get: $$\begin{aligned} & {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)-\pi ={{\cot }^{-1}}\left( 1 \right)-\pi \\\ & \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\pi -{{\cot }^{-1}}\left( 1 \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( -1 \right) \\\ \end{aligned}$$ Now the value of $${{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)$$ = $${{\tan }^{-1}}\left( -1 \right)+{{\cot }^{-1}}\left( -1 \right)$$. Now we will apply the identity: $${{\cot }^{-1}}\left( -1 \right)+{{\tan }^{-1}}\left( -1 \right)=\dfrac{\pi }{2}$$. So, we will get, $${{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2}$$.