Solveeit Logo

Question

Question: For the principal values, evaluate each of the following: \[{{\tan }^{-1}}\left( 2\sin \left( 4{{\co...

For the principal values, evaluate each of the following: tan1(2sin(4cos132)){{\tan }^{-1}}\left( 2\sin \left( 4{{\cos }^{-1}}\dfrac{\sqrt{3}}{2} \right) \right)

Explanation

Solution

To solve the question given above, we will first find out the value of 4cos1(32)4{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right). We will assume that it is the value of x. Then we will find the value of 2sinx2\sin x. We will assume that it is value of y. Then finally, we will calculate the value of tan1y{{\tan }^{-1}}y. We will assume that the value of the whole term evaluates to be z.

Complete step-by-step solution:
To start with, we will assume that the value of the term given in the question will be z. Thus, we will get:
z=tan1(2sin(4cos132))z={{\tan }^{-1}}\left( 2\sin \left( 4{{\cos }^{-1}}\dfrac{\sqrt{3}}{2} \right) \right) ---- (1)
Now, we will assume that the value of 4cos1(32)4{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) is x. Thus, we will get the following equation:
z=tan1(2sinx)z={{\tan }^{-1}}\left( 2\sin x \right) ----- (2)
Now, we will assume that the value of 2sinx2\sin x is y. Thus, we will get the following equation:
z=tan1(y)z={{\tan }^{-1}}\left( y \right) --------- (3)
Now, we will calculate the value of x. For this, we will have to find the value of cos132{{\cos }^{-1}}\dfrac{\sqrt{3}}{2}. We know that:
cos(π3)=32\cos \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}
Now, we will take cos1{{\cos }^{-1}} on both sides. Thus, we will get following equations:
cos1(cos(π3))=cos1(32){{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)
Now, we will apply the following identity:
cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x where x[0,π]x \in [0, \pi]
Thus, we will get:
cos1(32)=π3{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{3}
Now the value of x=4cos1(32)x=4{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right). Thus, we will get:
x=4π3\Rightarrow x=\dfrac{4\pi }{3}
Now, we have to find the value of y. For this, we must know the value of sinx\sin x.

& \sin x=\sin \left( \dfrac{4\pi }{3} \right) \\\ & \sin x=\sin \left( \dfrac{3\pi +\pi }{3} \right) \\\ & \Rightarrow \sin x=\sin \left( \pi +\dfrac{\pi }{3} \right) \\\ \end{aligned}$$ Now, we will use the following identity: $$\sin \left( \pi +x \right)=-\sin x$$. Thus, we will get the following equation: $$\Rightarrow \sin x=-\sin \left( \dfrac{\pi }{3} \right)$$ Now, we know that the value of $$\sin \left( \dfrac{\pi }{3} \right)$$ is $$\dfrac{\sqrt{3}}{2}$$. So, we will get following equation: $$\Rightarrow \sin x=-\dfrac{\sqrt{3}}{2}$$ Now, the value of $$y=2\sin x$$. $$\begin{aligned} & \Rightarrow y=2\left( -\dfrac{\sqrt{3}}{2} \right) \\\ & \Rightarrow y=-\sqrt{3} \\\ \end{aligned}$$ Now, we will calculate the value of z. We know that, from equation (3): $$z={{\tan }^{-1}}y$$ $$z={{\tan }^{-1}}\left( -\sqrt{3} \right)$$ We can write as, $${{\tan }^{-1}}\left( -\sqrt{3} \right)$$ as $$-{{\tan }^{-1}}\left( \sqrt{3} \right)$$ because $${{\tan }^{-1}}\left( x \right)$$ is an odd function. So we will get: $$\Rightarrow z=-{{\tan }^{-1}}\sqrt{3}$$ --------- (4) Now, we know that $$\tan \dfrac{\pi }{3}=\sqrt{3}$$. We will take $${{\tan }^{-1}}$$ on both sides. Thus we will get: $${{\tan }^{-1}}\left( \tan \dfrac{\pi }{3} \right)={{\tan }^{-1}}\left( \sqrt{3} \right)$$ Now, we will use the identity: $${{\tan }^{-1}}\left( \tan x \right)=x$$ where $x \in (\dfrac{-\pi}{2}, \dfrac{\pi}{2})$. Thus, we will get: $$\dfrac{\pi }{3}={{\tan }^{-1}}\left( \sqrt{3} \right)$$ $$\Rightarrow {{\tan }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{3}$$ ------- (5) From (4) and (5), we have: $$z=-\dfrac{\pi }{3}$$ --------- (6) From (1) and (6), we have: $${{\tan }^{-1}}\left( 2\sin \left( 4{{\cos }^{-1}}\dfrac{\pi }{3} \right) \right)=-\dfrac{\pi }{3}$$ **Note:** While solving the question, we have used the following identity: $${{\cos }^{-1}}\left( \cos x \right)=x$$. This identity is not valid everywhere. This is valid only when x lies between 0 and $\pi$. If x does not lie in this interval, then we have to make the necessary changes in identity.