Solveeit Logo

Question

Question: For the principal value, evaluate the following \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatornam...

For the principal value, evaluate the following
sin1[cos(2cosec1(2))]{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]

Explanation

Solution

Hint:First of all, use cosec1(x)=cosec1x{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x and then use a trigonometric table to find the value of cosec1(2){{\operatorname{cosec}}^{-1}}\left( 2 \right). Now use cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta and again use the table to find the value of cosπ3\cos \dfrac{\pi }{3}. Find the angle at which sinθ=12\sin \theta =\dfrac{1}{2} from the table or the value of sin1(12){{\sin }^{-1}}\left( \dfrac{1}{2} \right) to get the required answer.

Complete step-by-step answer:
In this question, we have to find the principal value of sin1[cos(2cosec1(2))]{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right].
First of all, let us consider the expression given in the question,
E=sin1[cos(2cosec1(2))]E={{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]
We know that, cosec1(x)=cosec1x{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x. By using this in the above expression, we get,
E=sin1[cos(2cosec12)]....(i)E={{\sin }^{-1}}\left[ \cos \left( -2{{\operatorname{cosec}}^{-1}}2 \right) \right]....\left( i \right)
Now, let us draw the table for trigonometric ratios of general angles.

From the above table, we can see that,
cosec(π6)=2\operatorname{cosec}\left( \dfrac{\pi }{6} \right)=2
cosec1(2)=π6\Rightarrow {{\operatorname{cosec}}^{-1}}\left( 2 \right)=\dfrac{\pi }{6}
So, by substituting the value of cosec1(2){{\operatorname{cosec}}^{-1}}\left( 2 \right) in the expression (i), we get,
E=sin1[cos(2.π6)]E={{\sin }^{-1}}\left[ \cos \left( -2.\dfrac{\pi }{6} \right) \right]
E=sin1[cos(π3)]E={{\sin }^{-1}}\left[ \cos \left( -\dfrac{\pi }{3} \right) \right]
We know that, cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta . By using this in the above expression, we get,
E=sin1[cosπ3]E={{\sin }^{-1}}\left[ \cos \dfrac{\pi }{3} \right]
Now, from the trigonometric table, we can see that, cosπ3=12\cos \dfrac{\pi }{3}=\dfrac{1}{2}. So, by substituting the value of cosπ3\cos \dfrac{\pi }{3} in the above expression, we get,
E=sin1(12)....(ii)E={{\sin }^{-1}}\left( \dfrac{1}{2} \right)....\left( ii \right)
Now we know that the range of principal value of sin1(x){{\sin }^{-1}}\left( x \right) lies between [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].
From the table of general trigonometric ratios, we get,
sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}
sin1(12)=π6\Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}
Now by substituting the value of sin1(12){{\sin }^{-1}}\left( \dfrac{1}{2} \right) in the expression (ii), we get,
E=π6E=\dfrac{\pi }{6}
Hence, we get the value of sin1[cos(2cosec1(2))]{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right] as π6\dfrac{\pi }{6}.

Note: In this question, students must take care that the value of the angle must lie in the range of cosec1x{{\operatorname{cosec}}^{-1}}x which is \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\} and sin1x{{\sin }^{-1}}x which is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] accordingly. Also, students can verify their answer by equating the given expression with π6\dfrac{\pi }{6} and taking sin on both sides and keep solving until LHS = RHS.