Solveeit Logo

Question

Question: For the principal value, evaluate the following \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right...

For the principal value, evaluate the following
sin1(32)+cosec1(23){{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right).

Explanation

Solution

Hint:First of all, use cosec1(x)=cosec1x{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x and sin1(x)=sin1x{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x to simplify the given expression. Now from the trigonometric table, find the value of θ\theta at which sinθ=32\sin \theta =\dfrac{\sqrt{3}}{2} and cosecθ=23\operatorname{cosec}\theta =\dfrac{2}{\sqrt{3}} or the value of sin1(32){{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) and cosec1(23){{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right) and substitute these in the given expression to get the required value.

Complete step-by-step answer:
In this question, we have to find the principal value of sin1(32)+cosec1(23){{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right).
First of all, let us consider the expression given in the question,
E=sin1(32)+cosec1(23)E={{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)
We know that, sin1(x)=sin1x{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x. By using this in the above expression, we get,
E=sin1(32)+cosec1(23)E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)
We know that, cosec1(x)=cosec1x{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x. By using this in the above expression, we get,
E=sin1(32)cosec1(23).....(i)E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-{{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right).....\left( i \right)
Now, let us draw the table for trigonometric ratios of general angles.

Now we know that the range of principal value of sin1(x){{\sin }^{-1}}\left( x \right) lies between [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].
From the table of general trigonometric ratios, we get,
sin(π3)=32\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}
By taking sin1{{\sin }^{-1}} on both the sides, we get,
sin1sin(π3)=sin1(32){{\sin }^{-1}}\sin \left( \dfrac{\pi }{3} \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)
We know that for π2xπ2,sin1sin(x)=x\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2},{{\sin }^{-1}}\sin \left( x \right)=x. So, we get,
π3=sin1(32)...(ii)\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)...\left( ii \right)
Now, we also know that the range of principal value of cosec1x{{\operatorname{cosec}}^{-1}}x lies between \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\}
From the table of trigonometric ratios, we get,
cosec(π3)=23\operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}}
By taking cosec1{{\operatorname{cosec}}^{-1}} on both the sides, we get,
cosec1(cosec(π3))=cosec1(23){{\operatorname{cosec}}^{-1}}\left( \operatorname{cosec}\left( \dfrac{\pi }{3} \right) \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)
We know that for \left[ \dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} \right]-\left\\{ 0 \right\\},{{\operatorname{cosec}}^{-1}}\operatorname{cosec}\left( x \right)=x. So, we get,
π3=cosec1(23)....(iii)\dfrac{\pi }{3}={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)....\left( iii \right)
So, by substituting the value of cosec1(23){{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right) from equation (iii) and sin1(32){{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) from equation (ii) in equation (i), we get,
E=π3π3E=-\dfrac{\pi }{3}-\dfrac{\pi }{3}
E=2π3E=\dfrac{-2\pi }{3}
Hence, we get the value of sin1(32)+cosec1(23){{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right) as 2π3\dfrac{-2\pi }{3}.

Note: In this question, many students make this mistake of taking cosec1(x){{\operatorname{cosec}}^{-1}}\left( -x \right) as πcosec1(x)\pi -{{\operatorname{cosec}}^{-1}}\left( x \right) like that in case of sec1(x){{\sec }^{-1}}\left( -x \right) and cot1(x){{\cot }^{-1}}\left( -x \right) which is wrong because cosec1(x)=cosec1(x){{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}\left( x \right).Students must strictly take care of the domain and range of the inverse trigonometric functions. Also, students must take care that the angle they take must lie in the range of the respective trigonometric functions to get the required answer.