Solveeit Logo

Question

Question: For the one-dimensional motion, described by \(\mathrm { X } = \mathrm { t } - \sin \mathrm { t }\)...

For the one-dimensional motion, described by X=tsint\mathrm { X } = \mathrm { t } - \sin \mathrm { t }

A

x(t) > 0 for all t > 0

B

v(t) > 0 for all t > 0

C

a(t) > 0 for all t > 0

D

All of these

Answer

x(t) > 0 for all t > 0

Explanation

Solution

x = t – sin t

v=dxdt=1costv = \frac { d x } { d t } = 1 - \cos t

a=dvdt=sint\mathrm { a } = \frac { \mathrm { dv } } { \mathrm { dt } } = \sin \mathrm { t }

\thereforex (t) > 0 for all values of t > 0 and v (t) can be zero for one value of t. a (t) can zero for one value of t.