Question
Question: For the matrix \[A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&{\dfrac{{1 + bc}}{a}} \e...
For the matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&{\dfrac{{1 + bc}}{a}} \end{array}} \right], show that aA−1=(a2+bc+1)I−aA.
Solution
First, we will use the formula of the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right] by, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right], where ∣A∣ is the determinantA. Then we will find the value of a, b, c and d from the given matrix A and then substitute them in the formula of inverse of matrix and multiply it with afor left sides of the equation. Then we will substitute the value of A and I in the right hand side of the equation to show the required result.
Complete step-by-step answer:
We are given that the matrix is A = \left[ {\begin{array}{*{20}{c}}
a&b; \\\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right].
We know that the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}}
h&i; \\\
j&k;
\end{array}} \right] by using the formula, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
k&{ - i} \\\
{ - j}&h;
\end{array}} \right], where ∣A∣ is the determinant of A.
Finding the value of h, i, k and l from the given matrix A, we get
⇒h=a
⇒i=b
⇒j=c
⇒l=a1+bc
Then we will compute the value of determinant of A using the above values, we get
Substituting the above values of the determinant of A, h, i, j and k in the formula of inverse of matrix, we get
\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}} {\dfrac{{1 + bc}}{a}}&{ - b} \\\ { - c}&a; \end{array}} \right] \\\ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\dfrac{{1 + bc}}{a}}&{ - b} \\\ { - c}&a; \end{array}} \right] \\\Multiplying the above equation by a on both sides, we get
{\dfrac{{1 + bc}}{a}}&b; \\\ c&a; \end{array}} \right]$$ Using the property in the above equation of matrix if a matrix multiplies a constant, then every element of the matrix will multiply it, we get\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{{20}{c}}
{a\left( {\dfrac{{1 + bc}}{a}} \right)}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right] \\
\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{{20}{c}}
{1 + bc}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(1)}} \\
\Rightarrow \left( {{a^2} + bc + 1} \right)\left[ {\begin{array}{{20}{c}}
1&0 \\
0&1
\end{array}} \right] - a\left[ {\begin{array}{{20}{c}}
a&b; \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{{20}{c}}
{{a^2}}&{ab} \\
{ac}&{a\left( {\dfrac{{1 + bc}}{a}} \right)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{{20}{c}}
{{a^2}}&{ab} \\
{ac}&{1 + bc}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{{20}{c}}
{{a^2} + bc + 1 - {a^2}}&{0 - ab} \\
{0 - ac}&{{a^2} + bc + 1 - bc - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{{20}{c}}
{bc + 1}&{ - ab} \\
{ - ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(2)}} \\