Solveeit Logo

Question

Question: For the matrix \[A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&{\dfrac{{1 + bc}}{a}} \e...

For the matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&{\dfrac{{1 + bc}}{a}} \end{array}} \right], show that aA1=(a2+bc+1)IaAa{A^{ - 1}} = \left( {{a^2} + bc + 1} \right)I - aA.

Explanation

Solution

First, we will use the formula of the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right] by, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right], where A\left| A \right| is the determinantAA. Then we will find the value of aa, bb, cc and dd from the given matrix AA and then substitute them in the formula of inverse of matrix and multiply it with aafor left sides of the equation. Then we will substitute the value of A and I in the right hand side of the equation to show the required result.

Complete step-by-step answer:
We are given that the matrix is A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&{\dfrac{{1 + bc}}{a}} \end{array}} \right].
We know that the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} h&i; \\\ j&k; \end{array}} \right] by using the formula, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}} k&{ - i} \\\ { - j}&h; \end{array}} \right], where A\left| A \right| is the determinant of AA.
Finding the value of hh, ii, kk and ll from the given matrix AA, we get
h=a\Rightarrow h = a
i=b\Rightarrow i = b
j=c\Rightarrow j = c
l=1+bca\Rightarrow l = \dfrac{{1 + bc}}{a}
Then we will compute the value of determinant of AA using the above values, we get

\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}} a&b; \\\ c&{\dfrac{{1 + bc}}{a}} \end{array}} \right| \\\ \Rightarrow \left| A \right| = a\left( {\dfrac{{1 + bc}}{a}} \right) - bc \\\ \Rightarrow \left| A \right| = 1 + bc - bc \\\ \Rightarrow \left| A \right| = 1 \\\

Substituting the above values of the determinant of A, hh, ii, jj and kk in the formula of inverse of matrix, we get

\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}} {\dfrac{{1 + bc}}{a}}&{ - b} \\\ { - c}&a; \end{array}} \right] \\\ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\dfrac{{1 + bc}}{a}}&{ - b} \\\ { - c}&a; \end{array}} \right] \\\

Multiplying the above equation by aa on both sides, we get

{\dfrac{{1 + bc}}{a}}&b; \\\ c&a; \end{array}} \right]$$ Using the property in the above equation of matrix if a matrix multiplies a constant, then every element of the matrix will multiply it, we get

\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{{20}{c}}
{a\left( {\dfrac{{1 + bc}}{a}} \right)}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right] \\
\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{
{20}{c}}
{1 + bc}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(1)}} \\

Now we will substitute the value of matrix A and identity matrix in the equation$$\left( {{a^2} + bc + 1} \right)I - aA$$, we get

\Rightarrow \left( {{a^2} + bc + 1} \right)\left[ {\begin{array}{{20}{c}}
1&0 \\
0&1
\end{array}} \right] - a\left[ {\begin{array}{
{20}{c}}
a&b; \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{
{20}{c}}
{{a^2}}&{ab} \\
{ac}&{a\left( {\dfrac{{1 + bc}}{a}} \right)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{
{20}{c}}
{{a^2}}&{ab} \\
{ac}&{1 + bc}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{{20}{c}}
{{a^2} + bc + 1 - {a^2}}&{0 - ab} \\
{0 - ac}&{{a^2} + bc + 1 - bc - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{
{20}{c}}
{bc + 1}&{ - ab} \\
{ - ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(2)}} \\

From equation (1) and equation (2), we get $$a{A^{ - 1}} = \left( {{a^2} + bc + 1} \right)I - aA$$ Hence, proved. **Note:** In these types of questions, the key concept is to find the inverse by putting the values in the formula of inverse. Students should know that the matrix $$\left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right]$$ is the adjoint matrix of $$A$$. We can remember this matrix to save some time in the $$2 \times 2$$ matrix but we have to compute the value of $$adjA$$ in the matrix with more than 2 rows and 2 columns. When students know the formula of inverse, the solution is very simple and easy. We need to know that an identity matrix I is a $$2 \times 2$$ matrix $$\left[ {\begin{array}{*{20}{c}} 1&0 \\\ 0&1 \end{array}} \right]$$.