Question
Question: For the matrix \(A = \left( {\begin{array}{*{20}{c}} 1&5 \\\ 6&7 \end{array}} \right)\),...
For the matrix A = \left( {\begin{array}{*{20}{c}}
1&5 \\\
6&7
\end{array}} \right),verify that
(i) (A+A′)is a symmetric matrix.
(ii) (A−A′)is a skew symmetric matrix.
Solution
Hint: Use the property of symmetric and skew symmetric matrices directly on the given matrix expression.
Given the matrix A = \left( {\begin{array}{*{20}{c}} 1&5 \\\ 6&7 \end{array}} \right)
We know that the transpose of a matrix is obtained by switching the rows with its columns
\Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\\
5&7
\end{array}} \right)
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
⇒if A=[aij]n×m and A′=[aij]m×n ,then A=A′
We need to prove (A+A′)is a symmetric matrix.
A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\\
{11}&{14}
\end{array}} \right){\text{ (1)}}
Also,{\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\\
{11}&{14}
\end{array}} \right){\text{ (2)}}
From equations (1)and(2) , we get (A+A′)′=(A+A′), which satisfies the above-mentioned condition of symmetric matrices.
Hence (A+A′)is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
⇒if A=[aij]n×m and A′=[aij]m×n ,then −A=A′
We need to prove (A−A′)is a skew symmetric matrix.
A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\\
1&0
\end{array}} \right){\text{ (3)}}
Also,{\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\\
{ - 1}&0
\end{array}} \right){\text{ (4)}}
From equations (3)and(4) , we get (A−A′)′=−(A−A′), which satisfies the above-mentioned condition of skew symmetric matrices.
Hence (A−A′)is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.