Question
Question: For the matrix \(A = \left( {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&2&{ - 3} \\\ 2&{ - 1}...
For the matrix A = \left( {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&2&{ - 3} \\\ 2&{ - 1}&3 \end{array}} \right), show that A3−6A2+5A+11I=0. Hence find A−1.
Solution
Start by finding out the values of 5A,A2&A3 by using the properties of matrix multiplication . Substitute these values in the given equation and find out A−1 by rearranging the terms and using the identity A⋅A−1=I.
Complete step-by-step answer:
Given, A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\\
1&2&{ - 3} \\\
2&{ - 1}&3
\end{array}} \right)
Now, we need to show that the matrix A satisfies the equation
i.e. A3−6A2+5A+11I=0
Firstly, let us compute 5A
5A = 5 \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\\
1&2&{ - 3} \\\
2&{ - 1}&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&5&5 \\\
5&{10}&{ - 15} \\\
{10}&{ - 5}&{15}
\end{array}} \right)
Now, We know A⋅A=A2 and A2⋅A=A3
Therefore , using the rule of multiplication of matrices i.e. Row by Column, we get
{A^2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}} \cdot {a_{11}} + {a_{12}} \cdot {a_{21}} + {a_{13}} \cdot {a_{31}}}&{{a_{11}} \cdot {a_{12}} + {a_{12}} \cdot {a_{22}} + {a_{13}} \cdot {a_{32}}}&{{a_{11}} \cdot {a_{13}} + {a_{12}} \cdot {a_{23}} + {a_{13}} \cdot {a_{33}}} \\\
{{a_{21}} \cdot {a_{11}} + {a_{22}} \cdot {a_{21}} + {a_{23}} \cdot {a_{31}}}&{{a_{21}} \cdot {a_{12}} + {a_{22}} \cdot {a_{22}} + {a_{23}} \cdot {a_{32}}}&{{a_{21}} \cdot {a_{13}} + {a_{22}} \cdot {a_{23}} + {a_{23}} \cdot {a_{33}}} \\\
{{a_{31}} \cdot {a_{11}} + {a_{32}} \cdot {a_{21}} + {a_{33}} \cdot {a_{31}}}&{{a_{31}} \cdot {a_{12}} + {a_{32}} \cdot {a_{22}} + {a_{33}} \cdot {a_{32}}}&{{a_{31}} \cdot {a_{13}} + {a_{32}} \cdot {a_{23}} + {a_{33}} \cdot {a_{33}}}
\end{array}} \right)
Substituting the values , we get
{A^2} = \left( {\begin{array}{*{20}{c}}
4&2&1 \\\
{ - 3}&8&{ - 14} \\\
7&{ - 3}&{14}
\end{array}} \right)
So , 6{A^2} = \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\\
{ - 18}&{48}&{ - 84} \\\
{42}&{ - 18}&{84}
\end{array}} \right)
Now , similarly we will find A3=A2⋅A
Substituting the values of A2&A,
{A^3} = {A^2} \cdot A = \left( {\begin{array}{*{20}{c}}
4&2&1 \\\
{ - 3}&8&{ - 14} \\\
7&{ - 3}&{14}
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\\
1&2&{ - 3} \\\
2&{ - 1}&3
\end{array}} \right) \\\
= \left( {\begin{array}{*{20}{c}}
{4 \times 1 + 2 \times 1 + 1 \times 2}&{4 \times 1 + 2 \times 2 - 1 \times 1}&{4 \times 1 - 2 \times 3 + 1 \times 3} \\\
{ - 3 \times 1 + 8 \times 1 - 14 \times 2}&{ - 3 \times 1 + 8 \times 2 + 14 \times 1}&{ - 3 \times 1 - 8 \times 3 - 14 \times 3} \\\
{7 \times 1 - 3 \times 1 + 14 \times 2}&{7 \times 1 - 3 \times 2 - 14 \times 1}&{7 \times 1 + 3 \times 3 + 14 \times 3}
\end{array}} \right) \\\
{A^3} = \left( {\begin{array}{*{20}{c}}
8&7&1 \\\
{ - 23}&{27}&{ - 69} \\\
{32}&{ - 13}&{58}
\end{array}} \right) \\\
Now substituting all the values in the equation A3−6A2+5A+11I=0, we get
\left( {\begin{array}{*{20}{c}}
8&7&1 \\\
{ - 23}&{27}&{ - 69} \\\
{32}&{ - 13}&{58}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\\
{ - 18}&{48}&{ - 84} \\\
{42}&{ - 18}&{84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
5&5&5 \\\
5&{10}&{ - 15} \\\
{10}&{ - 5}&{15}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{11}&0&0 \\\
0&{11}&0 \\\
0&0&{11}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&0&0 \\\
0&0&0 \\\
0&0&0
\end{array}} \right)
Now, from this we will find A−1
−11I=A3−6A2+5A
Multiplying both side by A−1 , we get
−11A−1=A2−6A+5I(∵A⋅A−1=I)
A−1=−11A2−6A+5I
Now , substitute the values of A and I , we get
\therefore {A^{ - 1}} = \dfrac{{ - 1}}{{11}}\left( {\begin{array}{*{20}{c}}
3&{ - 4}&{ - 5} \\\
{ - 9}&1&4 \\\
{ - 5}&3&1
\end{array}} \right)
Note: Two matrices can be multiplied if and only if the number of columns of the pre matrix is equal to the number of rows of the post matrix (AB, A is pre matrix, B is post matrix). Students must remember all the properties and identities related to matrices and determinants , As they are very important from an exam point of view as well as for faster calculations.