Solveeit Logo

Question

Question: For the matrix \(A = \left( {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&2&{ - 3} \\\ 2&{ - 1}...

For the matrix A = \left( {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&2&{ - 3} \\\ 2&{ - 1}&3 \end{array}} \right), show that A36A2+5A+11I=0{A^3} - 6{A^2} + 5A + 11I = 0. Hence find A1{A^{ - 1}}.

Explanation

Solution

Start by finding out the values of 5A,A2&A35A,{A^2}\& {A^3} by using the properties of matrix multiplication . Substitute these values in the given equation and find out A1{A^{ - 1}} by rearranging the terms and using the identity AA1=IA \cdot {A^{ - 1}} = I.

Complete step-by-step answer:
Given, A = \left( {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&2&{ - 3} \\\ 2&{ - 1}&3 \end{array}} \right)
Now, we need to show that the matrix A satisfies the equation
i.e. A36A2+5A+11I=0{A^3} - 6{A^2} + 5A + 11I = 0
Firstly, let us compute 5A
5A = 5 \cdot \left( {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&2&{ - 3} \\\ 2&{ - 1}&3 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 5&5&5 \\\ 5&{10}&{ - 15} \\\ {10}&{ - 5}&{15} \end{array}} \right)
Now, We know AA=A2A \cdot A = {A^2} and A2A=A3{A^2} \cdot A = {A^3}
Therefore , using the rule of multiplication of matrices i.e. Row by Column, we get

{A^2} = \left( {\begin{array}{*{20}{c}} {{a_{11}} \cdot {a_{11}} + {a_{12}} \cdot {a_{21}} + {a_{13}} \cdot {a_{31}}}&{{a_{11}} \cdot {a_{12}} + {a_{12}} \cdot {a_{22}} + {a_{13}} \cdot {a_{32}}}&{{a_{11}} \cdot {a_{13}} + {a_{12}} \cdot {a_{23}} + {a_{13}} \cdot {a_{33}}} \\\ {{a_{21}} \cdot {a_{11}} + {a_{22}} \cdot {a_{21}} + {a_{23}} \cdot {a_{31}}}&{{a_{21}} \cdot {a_{12}} + {a_{22}} \cdot {a_{22}} + {a_{23}} \cdot {a_{32}}}&{{a_{21}} \cdot {a_{13}} + {a_{22}} \cdot {a_{23}} + {a_{23}} \cdot {a_{33}}} \\\ {{a_{31}} \cdot {a_{11}} + {a_{32}} \cdot {a_{21}} + {a_{33}} \cdot {a_{31}}}&{{a_{31}} \cdot {a_{12}} + {a_{32}} \cdot {a_{22}} + {a_{33}} \cdot {a_{32}}}&{{a_{31}} \cdot {a_{13}} + {a_{32}} \cdot {a_{23}} + {a_{33}} \cdot {a_{33}}} \end{array}} \right)
Substituting the values , we get
{A^2} = \left( {\begin{array}{*{20}{c}} 4&2&1 \\\ { - 3}&8&{ - 14} \\\ 7&{ - 3}&{14} \end{array}} \right)

So , 6{A^2} = \left( {\begin{array}{*{20}{c}} {24}&{12}&6 \\\ { - 18}&{48}&{ - 84} \\\ {42}&{ - 18}&{84} \end{array}} \right)
Now , similarly we will find A3=A2A{A^3} = {A^2} \cdot A
Substituting the values of A2&A{A^2}\& A,
{A^3} = {A^2} \cdot A = \left( {\begin{array}{*{20}{c}} 4&2&1 \\\ { - 3}&8&{ - 14} \\\ 7&{ - 3}&{14} \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&2&{ - 3} \\\ 2&{ - 1}&3 \end{array}} \right) \\\ = \left( {\begin{array}{*{20}{c}} {4 \times 1 + 2 \times 1 + 1 \times 2}&{4 \times 1 + 2 \times 2 - 1 \times 1}&{4 \times 1 - 2 \times 3 + 1 \times 3} \\\ { - 3 \times 1 + 8 \times 1 - 14 \times 2}&{ - 3 \times 1 + 8 \times 2 + 14 \times 1}&{ - 3 \times 1 - 8 \times 3 - 14 \times 3} \\\ {7 \times 1 - 3 \times 1 + 14 \times 2}&{7 \times 1 - 3 \times 2 - 14 \times 1}&{7 \times 1 + 3 \times 3 + 14 \times 3} \end{array}} \right) \\\ {A^3} = \left( {\begin{array}{*{20}{c}} 8&7&1 \\\ { - 23}&{27}&{ - 69} \\\ {32}&{ - 13}&{58} \end{array}} \right) \\\
Now substituting all the values in the equation A36A2+5A+11I=0{A^3} - 6{A^2} + 5A + 11I = 0, we get
\left( {\begin{array}{*{20}{c}} 8&7&1 \\\ { - 23}&{27}&{ - 69} \\\ {32}&{ - 13}&{58} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {24}&{12}&6 \\\ { - 18}&{48}&{ - 84} \\\ {42}&{ - 18}&{84} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 5&5&5 \\\ 5&{10}&{ - 15} \\\ {10}&{ - 5}&{15} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {11}&0&0 \\\ 0&{11}&0 \\\ 0&0&{11} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0&0&0 \\\ 0&0&0 \\\ 0&0&0 \end{array}} \right)
Now, from this we will find A1{A^{ - 1}}
11I=A36A2+5A- 11I = {A^3} - 6{A^2} + 5A
Multiplying both side by A1{A^{ - 1}} , we get
11A1=A26A+5I(AA1=I)- 11{A^{ - 1}} = {A^2} - 6A + 5I\left( {\because A \cdot {A^{ - 1}} = I} \right)
A1=A26A+5I11{A^{ - 1}} = \dfrac{{{A^2} - 6A + 5I}}{{ - 11}}
Now , substitute the values of A and I , we get
\therefore {A^{ - 1}} = \dfrac{{ - 1}}{{11}}\left( {\begin{array}{*{20}{c}} 3&{ - 4}&{ - 5} \\\ { - 9}&1&4 \\\ { - 5}&3&1 \end{array}} \right)

Note: Two matrices can be multiplied if and only if the number of columns of the pre matrix is equal to the number of rows of the post matrix (AB, A is pre matrix, B is post matrix). Students must remember all the properties and identities related to matrices and determinants , As they are very important from an exam point of view as well as for faster calculations.