Solveeit Logo

Question

Mathematics Question on Determinants

For the matrix A=[32\11]\begin{bmatrix}3&2\\\1&1\end{bmatrix},find the numbers a and b such that A2+ aA+bI=O.

Answer

Let A=[32\11]\begin{bmatrix}3&2\\\1&1\end{bmatrix}

A2=\begin{bmatrix}3&2\\\1&1\end{bmatrix}$$\begin{bmatrix}3&2\\\1&1\end{bmatrix}=[9+26+2\3+12+1]\begin{bmatrix}9+2&6+2\\\3+1&2+1\end{bmatrix}

=[118\43]\begin{bmatrix}11&8\\\4&3\end{bmatrix}
Now, A2+aA+bI=0 [post multiplying by A-1 as IAI≠0]
\Rightarrow (AA)A-1+aAA-1+bAA-1=0
\Rightarrow A(AA-1)+aI+b(IA-1)=0
AI+aI+bA-1=0
\Rightarrow A+aI=-bA-1
\Rightarrow A-1=-1b\frac{1}{b}(A+aI)
Now, A-1=1A\frac{1}{\mid A\mid}adj A=\frac{1}{1}$$\begin{bmatrix}1&-2\\\\-1&3\end{bmatrix}
we have:
[1213]\begin{bmatrix}1&-2\\\\-1&3\end{bmatrix}=-\frac{1}{b}$$\bigg($$\begin{bmatrix}3&2\\\1&1\end{bmatrix}+\begin{bmatrix}a&0\\\0&a\end{bmatrix}$$\bigg)=-\frac{1}{b}$$\begin{bmatrix}3+a&2\\\1&1+a\end{bmatrix}=[3ab2][b21b1ab]\begin{bmatrix}\frac{-3-a}{b}&\frac{-2][b}2\\\\\frac{-1}{b}&\frac{-1-a}{b}\end{bmatrix}
Comparing the corresponding elements of the two matrices have:
-1b=1b=1\frac{1}{b}=-1\geq b=1
3ab=13a=1\frac{-3-a}{b}=1\geq -3-a=1
\Rightarrow a=-4

Hence, −4 and 1 are the required values of a and b respectively.