Question
Mathematics Question on Determinants
For the matrix A=[3\121],find the numbers a and b such that A2+ aA+bI=O.
Let A=[3\121]
A2=\begin{bmatrix}3&2\\\1&1\end{bmatrix}$$\begin{bmatrix}3&2\\\1&1\end{bmatrix}=[9+2\3+16+22+1]
=[11\483]
Now, A2+aA+bI=0 [post multiplying by A-1 as IAI≠0]
⇒ (AA)A-1+aAA-1+bAA-1=0
⇒ A(AA-1)+aI+b(IA-1)=0
AI+aI+bA-1=0
⇒ A+aI=-bA-1
⇒ A-1=-b1(A+aI)
Now, A-1=∣A∣1adj A=\frac{1}{1}$$\begin{bmatrix}1&-2\\\\-1&3\end{bmatrix}
we have:
1−1−23=-\frac{1}{b}$$\bigg($$\begin{bmatrix}3&2\\\1&1\end{bmatrix}+\begin{bmatrix}a&0\\\0&a\end{bmatrix}$$\bigg)=-\frac{1}{b}$$\begin{bmatrix}3+a&2\\\1&1+a\end{bmatrix}=b−3−ab−12−2][bb−1−a
Comparing the corresponding elements of the two matrices have:
-b1=−1≥b=1
b−3−a=1≥−3−a=1
⇒ a=-4
Hence, −4 and 1 are the required values of a and b respectively.