Question
Mathematics Question on Determinants
For the matrix A=1 1 212−11−33show that A3−6A2+5A+11I=O.Hence,find A−1.
A=1 1 212−11−33
A2=1 1 212−11−331 1 212−11−33
=1+1+2 1+2−6 2−1+61+2−11+4+32−2−31−3+31−6−92+3+9=4 −3 728−31−1414
A3=4 −3 728−31−14141 1 212−11−33
=4+2+2 −3+8−28 7−3+284+4−1−3+16+147−6−144−6+3−3−24−427+9+12
=8 −23 32727−131−6958
therefore A3−6A2+5A+11I
=8 −23 32727−131−6958−64 −3\728−31−1414+51 1 212−11−33+111 0 0010001
=8 −23 32727−131−6958−24 −18\421248−186−8484+5 5 10510−55−1515+11 0 001100011
=24 −18 421248−186−8484−24−18 421248−186−8484
=0
Thus A3−6A2+5A+11I=0
(AAA)A−1−6(AA)A−1+5AA−1+11IA−1=0 [post multipying by A−1as∣A∣=0]
⟹AA(AA−1)−6A(AA−1)+5(AA−1)=−11(IA−1)
=>A2−6A+5I=−11A−1
⟹A−1=11−1(A2−6A+5I)...(1)
Now A2−6A+5I
=4 −3 728−31−1414−61 1 212−11−33+51 0 0010001
=4 −3 728−31−1414−6 6 12612−66−1818+5 0 0050005
=9 −3 7213−31−1419−6 6 12612−66−1818
=3 −9 −5−413−541
Form equation (1) we have
A−1=11−13 −9 −5−413−541
=111−3 9 54−1−35−4−1