Question
Mathematics Question on Determinants
For the matrices A and B, verify that (AB)′=B'A' where
I. A=1−4\3,B=[−121]
II. A= 0\1\2,B=[157]
Answer
I. A=1−4\3,B=[−121]
AB =\begin{bmatrix}1\\\\-4\\\3\end{bmatrix}$$\begin{bmatrix}-1&2&1\end{bmatrix}
so (AB)'=−1\4\14−8−4−363
Now A'=[−143],B'=−1\2\1
so B'A'=\begin{bmatrix}-1&4&3\end{bmatrix}$$\begin{bmatrix}-1\\\2\\\1\end{bmatrix}
=−1\4\14−8−4−363
Hence we have verified that (AB)′=B'A'
II. A=0\1\2,B=[157]
AB=\begin{bmatrix}0\\\1\\\2\end{bmatrix}$$\begin{bmatrix}1&5&7\end{bmatrix}=0\1\205100714
so (AB)'=0\0\015721014
Now A'=[012],B'=1\5\7
B'A'=\begin{bmatrix}1\\\5\\\7\end{bmatrix}$$\begin{bmatrix}0&1&2\end{bmatrix}=0\0\015721014
Hence we have verified that (AB)′=B'A'