Solveeit Logo

Question

Mathematics Question on Matrices

For the matrices A and B, verify that (AB)′= B'A' where
(i)A=[14\3],B=[121]\begin{bmatrix}1\\\\-4\\\3\end{bmatrix},\,B=\begin{bmatrix}-1&2&1\end{bmatrix}

(ii)A=[0\1\2],B=[157]\begin{bmatrix}0\\\1\\\2\end{bmatrix},\,B=\begin{bmatrix}1&5&7\end{bmatrix}

Answer

(i)AB=[14\3][121]\begin{bmatrix}1\\\\-4\\\3\end{bmatrix}\begin{bmatrix}-1&2&1\end{bmatrix}=[121\484363]\begin{bmatrix}-1&2&1\\\4&-8&-4\\\\-3&6&3\end{bmatrix}

therefore (AB)'=[143\286\143]\begin{bmatrix}-1&4&-3\\\2&-8&6\\\1&-4&3\end{bmatrix}

Now A'=[143]\begin{bmatrix}1&-4&3\end{bmatrix},B'=[1\2\1]\begin{bmatrix}-1\\\2\\\1\end{bmatrix}

Therefore B'A'=[1\2\1]=[143\286\143]\begin{bmatrix}-1\\\2\\\1\end{bmatrix}=\begin{bmatrix}-1&4&-3\\\2&-8&6\\\1&-4&3\end{bmatrix}

Hence we verified that:(AB)′= B'A'


(ii)AB=[0\1\2][157]\begin{bmatrix}0\\\1\\\2\end{bmatrix}\begin{bmatrix}1&5&7\end{bmatrix}=[000\157\21014]\begin{bmatrix}0&0&0\\\1&5&7\\\2&10&14\end{bmatrix}

so (AB)'=[012\0510\0714]\begin{bmatrix}0&1&2\\\0&5&10\\\0&7&14\end{bmatrix}

Now A'=[012]\begin{bmatrix}0&1&2\end{bmatrix},B'=[1\5\7]\begin{bmatrix}1\\\5\\\7\end{bmatrix}
so B'A'=\begin{bmatrix}1\\\5\\\7\end{bmatrix}$$\begin{bmatrix}0&1&2\end{bmatrix}=[012\0510\0714]\begin{bmatrix}0&1&2\\\0&5&10\\\0&7&14\end{bmatrix}

Hence we verified that(AB)′= B'A'