Question
Mathematics Question on Conic sections
For the hyperbola H:x2–y2=1 and the ellipse E:a2x2+b2y2=1,a>b>0, let the
(1) eccentricity of E be reciprocal of the eccentricity of H, and
(2) the line y=25x+k be a common tangent of E and H.
Then 4(a2+b2) is equal to _______.
Answer
eE=1−a2b2,eH=2
If ⇒ eE=eH1
⇒ a2a2−b2=21
2a2−2b2=a2
a2=2b2
and y=25x+k is tangent to ellipse then
K2=a2×25+b2=23
6b2=23⇒b2=41 and a2=21
∴ 4⋅(a2+b2)=3