Solveeit Logo

Question

Mathematics Question on Conic sections

For the hyperbola H:x2y2=1H: x^2 – y^2 = 1 and the ellipse E:x2a2+y2b2=1,a>b>0E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,a>b>0, let the
(1) eccentricity of E be reciprocal of the eccentricity of H, and
(2) the line y=52x+ky= \sqrt\frac{5}{2} x+k be a common tangent of E and H.
Then 4(a2+b2)4(a^2 + b^2) is equal to _______.

Answer

eE=1b2a2e_E= \sqrt{1− \frac{b ^2}{a^2}},eH=2e_H=\sqrt2

If ⇒ eE=1eHe_E= \frac{1}{e_H}

a2b2a2=12\frac{a^2−b^2}{a^2}= \frac{1}{2}

2a22b2=a22a^{2−2b}2=a^2

a2=2b2a^2=2b^2

and y=52x+ky= \sqrt\frac{5}{2} x+k is tangent to ellipse then

K2=a2×52+b2=32K^2=a^2× \frac{5}{2}+b^2= \frac{3}{2}

6b2=32b2=146b^2= \frac{3}{2 }⇒ b^2 = \frac{1}{4} and a2=12a^2= \frac{1}{2 }

4(a2+b2)=34⋅(a^2+b^2)=3