Solveeit Logo

Question

Mathematics Question on Hyperbola

For the hyperbola x2cos2αy2sin2α=1\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1, which of the following remains constant when α\alpha varies

A

Abscissae of vertices

B

Abscissae of foci

C

Eccentricity

D

Directrix

Answer

Abscissae of foci

Explanation

Solution

Given Hyperbola x2cos2αy2sin2α=1\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1
given that the angle α\alpha varies
We have a=cosα,b=sinαa=\cos \alpha, b=\sin \alpha
now eccentricity e=a2+b2a=cos2α+sin2αcosα=1cosαe=\frac{\sqrt{a^{2}+b^{2}}}{a}=\frac{\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}}{\cos \alpha}=\frac{1}{\cos \alpha}
Thus eccentricity varies with α\alpha.
Now foci (±ae,0)=(1,0)(\pm a e, 0)=(1,0) Independent of α\alpha.
Vertex (±a,0)=(cosα,0)(\pm a, 0)=(\cos \alpha, 0) dependent on α\alpha.
Directrix is given by x=±ae=cos2αx=\pm \frac{a}{e}=\cos ^{2} \alpha
so dependent on α\alpha.
So abscissae of foci are independent of α\alpha.

The correct answer is (B): Abscissae of foci