Solveeit Logo

Question

Question: For the given projectile as shown, the time \((\)in seconds\()\) after which the angle between veloc...

For the given projectile as shown, the time ((in seconds)) after which the angle between velocity vector and initial velocity vector becomes π2\dfrac{\pi }{2} is (u=100m/s)(u = 100m/s)

(A) 504\dfrac{{50}}{4}
(B) 1003\dfrac{{100}}{3}
(C) 143\dfrac{{14}}{3}
(D) 283\dfrac{{28}}{3}

Explanation

Solution

In order to solve above problem first calculate, the initial velocity vector component in x and y direction i.e.,
ux=ucosθ{u_x} = u\cos \theta
uy=usinθ{u_y} = u\sin \theta
u=u = Initial velocity vector
ux={u_x} = x component of Initial velocity vector
uy={u_y} = y component of Initial velocity vector
After then calculate the velocity vector at time t and also calculate the velocity vector component in x and y direction with the help of newton’s first equation. Now, on comparing the both velocity components, we will get a desired solution.

Complete step by step answer:
Given that initial velocity u=100m/su = 100m/s and the angle at which the particle is projected initially is θ=53\theta = 53^\circ .
So, x-component of initial velocity ux=ucosθ{u_x} = u\cos \theta
ux=100cos53{u_x} = 100\cos 53^\circ
ux=100(35)\Rightarrow {u_x} = 100\left( {\dfrac{3}{5}} \right) [cos53=35]\left[ {\because \cos 53^\circ = \dfrac{3}{5}} \right]
ux=3005\Rightarrow {u_x} = \dfrac{{300}}{5}
ux=60\Rightarrow {u_x} = 60 …..(1)
And y-component of initial velocity uy=usinθ{u_y} = u\sin \theta
uy=100sin53{u_y} = 100sin53^\circ
uy=100(45)\Rightarrow {u_y} = 100\left( {\dfrac{4}{5}} \right) [sin53=45]\left[ {\because \sin 53^\circ = \dfrac{4}{5}} \right]
uy=4005\Rightarrow {u_y} = \dfrac{{400}}{5}
uy=80\Rightarrow {u_y} = 80 …..(2)
Now, according to the given in question the angle between velocity vector at time t and initial velocity vector becomes π2\dfrac{\pi }{2} i.e., 90. Here we can easily understand this thing with diagram as –

In the diagram we can easily see that at time t the angle of velocity vector (v)(\overrightarrow v ) with horizontal as 3737^\circ .
So, the x-component of velocity vector v\overrightarrow v is
vx=vcosθ{v_x} = v\cos \theta [[Here θ=37]\theta = 37^\circ ]
We know that the x-component of velocity does not change during the whole motion of the projectile because acceleration in x-direction is zero.
Here vx={v_x} = x component of velocity vectorvvat timett
So, vx=ux{v_x} = {u_x}
So, from equation 1
vx=60\Rightarrow {v_x} = 60
So, vcos37=60v\cos 37^\circ = 60
v=60cos37\Rightarrow v = \dfrac{{60}}{{\cos 37^\circ }}
cos37=45\because \cos 37^\circ = \dfrac{4}{5}
v=60×54\Rightarrow v = \dfrac{{60 \times 5}}{4}
v=3004\Rightarrow v = \dfrac{{300}}{4}
v=75m/s\Rightarrow v = 75m/s
Hence, the velocity at time t is 75m/s
Now, the y-component of velocity vector at time t is
vy=vsin37{v_y} = - v\sin 37^\circ
vy=(75×35)\Rightarrow {v_y} = - \left( {75 \times \dfrac{3}{5}} \right) [sin37=35]\left[ {\because \sin 37^\circ = \dfrac{3}{5}} \right]
vy=(15×3)\Rightarrow {v_y} = - (15 \times 3)
vy=45\Rightarrow {v_y} = - 45 …..(3)
Here –ve sign represents the downward direction.
So, we can write newton’s first equation for y-component of velocity vector at time t as
vy=uy+ayt{v_y} = {u_y} + {a_y}t
Here ay={a_y} = acceleration in y direction
ay=g=10m/s2\because {a_y} = - g = - 10m/{s^2}
So, from equation 2 and 3
45=8010t\Rightarrow - 45 = 80 - 10t
4580=10t\Rightarrow - 45 - 80 = - 10t
t=12510\Rightarrow t = \dfrac{{ - 125}}{{ - 10}}
t=12510\Rightarrow t = \dfrac{{125}}{{10}}
t=252sec\Rightarrow t = \dfrac{{25}}{2}\sec
Now divide and multiply with 2 then
t=25×22×2t = \dfrac{{25 \times 2}}{{2 \times 2}}
t=504sec\Rightarrow t = \dfrac{{50}}{4}\sec

Therefore, option A is the correct answer.

Note:
Alternatively,
We know that, the x-component of initial velocity is
ux=ucosθ{u_x} = u\cos \theta

The y-component of initial velocity is
uy=usinθ{u_y} = u\sin \theta
So, initial velocity vector
u=uxi^+uyj^\overrightarrow u = {u_x}\widehat i + {u_y}\widehat j
u=(ucosθ)i^+(usinθ)j^\overrightarrow u = (u\cos \theta )\widehat i + (u\sin \theta )\widehat j …..(1)
At time t, the velocity vector is given as
v=vxi^+vyj^\overrightarrow v = {v_x}\widehat i + {v_y}\widehat j
Here vx=vcos(90θ)=vsinθ{v_x} = v\cos (90 - \theta ) = v\sin \theta
Because x-component of velocity does not changes
So, vx=ux{v_x} = {u_x}
Now, from newton’s first equation
vy=(uygt){v_y} = ({u_y} - gt)
So, v=uxi^+(uygt)j^\overrightarrow v = {u_x}\widehat i + ({u_y} - gt)\widehat j
v=(ucosθ)i^+(usinθgt)j^\overrightarrow v = (u\cos \theta )\widehat i + (u\sin \theta - gt)\widehat j …..(2)
Given that at time t, v\overrightarrow v and u\overrightarrow u are perpendicular to each other.
So, uv=0\overrightarrow u \cdot \overrightarrow v = 0
From equation 1 and 2
[(ucosθ)i^+(usinθ)j^][(ucosθ)i^+(usinθgt)j^]=0[(u\cos \theta )\widehat i + (u\sin \theta )\widehat j] \cdot [(u\cos \theta )\widehat i + (u\sin \theta - gt)\widehat j] = 0
u2cos2θ+(usinθ)(usinθgt)=0{u^2}{\cos ^2}\theta + (u\sin \theta )(u\sin \theta - gt) = 0
    u2cos2θ+u2sin2θugtsinθ=0\implies {u^2}{\cos ^2}\theta + {u^2}{\sin ^2}\theta - ugt\sin \theta = 0
    u2(cos2θ+sin2θ)=ugtsinθ\implies {u^2}({\cos ^2}\theta + {\sin ^2}\theta ) = ugt\sin \theta
    cos2θ+sin2θ=1\implies {\cos ^2}\theta + {\sin ^2}\theta = 1
    u2=ugtsinθ\implies {u^2} = ugt\sin \theta
    t=u2ugsinθ\implies t = \dfrac{{{u^2}}}{{ug\sin \theta }}
    t=ugsinθ\implies t = \dfrac{u}{{g\sin \theta }}
Here u = initial velocity vector
g = acceleration due to gravity
given that
u=100m/su = 100m/s
g=10m/s2g = 10m/{s^2}
θ=53\theta = 53^\circ
So, t=10010sin53t = \dfrac{{100}}{{10\sin 53^\circ }}
sin53=45\because \sin 53^\circ = \dfrac{4}{5}
t=10010×45t = \dfrac{{100}}{{10 \times \dfrac{4}{5}}}
    t=10×54\implies t = \dfrac{{10 \times 5}}{4}
t=504sec\therefore t = \dfrac{{50}}{4}\sec