Solveeit Logo

Question

Question: For the given orbital in column \[{\rm{I}}\], the only CORRECT combination for any hydrogen like spe...

For the given orbital in column I{\rm{I}}, the only CORRECT combination for any hydrogen like species is-

Column 1Column 2Column 3
(I){\rm{(I)}} 1s{\rm{1s}}orbital{\rm{(i)}}$$$${{\rm{\varphi }}_{{\rm{n,l,}}{{\rm{m}}_{\rm{l}}}}}\propto {\left( {\dfrac{{\rm{Z}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)^{\dfrac{{\rm{3}}}{{\rm{2}}}}}{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)}(P)
(II){\rm{(II)}} 2s{\rm{2s}}orbital(ii){\rm{(ii)}}one radial node(Q) Probability density at nucleus
(III){\rm{(III)}} 2pz{\rm{2}}{{\rm{p}}_z}orbital{\rm{(iii)}}$$$${{\rm{\varphi }}_{{\rm{n,l,}}{{\rm{m}}_{\rm{l}}}}}\propto {\left( {\dfrac{{\rm{Z}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)^{\dfrac{5}{{\rm{2}}}}}{\rm{r}}{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{\rm{2}}{{\rm{a}}_{\rm{0}}}}}} \right)}{\mathop{\rm co}\nolimits} {\rm{s\theta }}(R) Probability density is maximum at nucleus
{\rm{(IV)}}$$$${\rm{3d}}_z^2orbital{\rm{(iv)}}$$$${\rm{xy}}plane is a nodal node(S) Energy needed to excite electrons from n=2n\, = \,2 state to n=4n\, = \,4 state is 2732\dfrac{{27}}{{32}}times energy needed to excite electrons from n=2n\, = \,2 state to n=6n\, = \,6 state

(A) {\rm{(IV)}}$$$${\rm{(iv)}}(R)
(B) {\rm{(III)}}$$$${\rm{(iii)}} (P)
(C) {\rm{(II)}}$$$${\rm{(ii)}}(P)
(D) {\rm{(I)}}$$$${\rm{(ii)}}(S)

Explanation

Solution

As we know that hydrogen is the simplest atom containing only one electron. n,l,ml{\rm{n,}}\,{\rm{l,}}\,{{\rm{m}}_{\rm{l}}} resembles the principal quantum number, azimuthal quantum number and magnetic quantum number respectively. Radial node is measured from nl{\rm{n}}\,{\rm{l}} values. The probability density of finding the electron is never 100%100\% because electrons are having Heisenberg uncertainty principle.

Complete answer
We will see the column one by one
In column 1, we will determine the radial nodes of the given orbitals by the formula
radialnode=nl1{\rm{radial}}\,{\rm{node = }}\,{\rm{n - l - 1}}
For 1s{\rm{1s}}orbital
radialnode=101=0{\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,1{\rm{ - 0 - 1 = }}\,0
For 2s{\rm{2s}}orbital
radialnode=201=1{\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,2{\rm{ - 0 - 1 = }}\,1
For 3pz{\rm{3}}{{\rm{p}}_z}orbital
radialnode=311=1{\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,{\rm{3 - 1 - 1 = }}\,{\rm{1}}
For 3dz2{\rm{3d}}_z^2orbital
radialnode=321=0{\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,3{\rm{ - 2 - 1 = }}\,0
Now we could see from above explanation, the radial nodes is one for 2s{\rm{2s}} and 3pz{\rm{3}}{{\rm{p}}_z} orbitals but the graph for 2s{\rm{2s}}orbital is shown as
By the formula

R2,0=132π1a032(2ra0)e(r2a0) y=(2x)ex{{\rm{R}}_{{\rm{2,0}}}}{\rm{ = }}\dfrac{{\rm{1}}}{{\sqrt {{\rm{32\pi }}} }}\dfrac{{\rm{1}}}{{{\rm{a}}_{\rm{0}}^{\dfrac{{\rm{3}}}{{\rm{2}}}}}}\left( {{\rm{2 - }}\dfrac{{\rm{r}}}{{{{\rm{a}}_{\rm{0}}}}}} \right){{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{\rm{r}}}{{{\rm{2}}{{\rm{a}}_{\rm{0}}}}}} \right)}\\\ {\rm{y = }}\left( {{\rm{2 - x}}} \right)\,{{\rm{e}}^{{\rm{ - x}}}}

Appling above formula we have values along x{\rm{x}}and y{\rm{y}} direction as-

And the graph for 3pz{\rm{3}}{{\rm{p}}_z}orbital is shown as-

**Therefore, our correct option is option (C) -{\rm{(II)}}$$$${\rm{(ii)}}(P).

Note: **
φn,l,ml(Za0)32e(Zra0){{\rm{\varphi }}_{{\rm{n,l,}}{{\rm{m}}_{\rm{l}}}}}\propto {\left( {\dfrac{{\rm{Z}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)^{\dfrac{{\rm{3}}}{{\rm{2}}}}}{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)} belongs to orbital 1s{\rm{1s}} where principle quantum number can be calculated by e(Zra0){{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)} and azimuthal quantum number is calculated by minimum power of r{\rm{r}} or maximum power of sinθcosθ{\rm{sin\theta cos\theta }}.
Energy of one- dimensional box is calculated by –
Ex=nx2h28ml2{{\rm{E}}_{\rm{x}}}{\rm{ = }}\dfrac{{{\rm{n}}_{\rm{x}}^{\rm{2}}{{\rm{h}}^{\rm{2}}}}}{{{\rm{8m}}{{\rm{l}}^{\rm{2}}}}}