Solveeit Logo

Question

Mathematics Question on Linear Programming Problem

For the given LPP (Linear Programming Problem) max z=5x+3yz=5x+3y 2x+y122x+y\le 12 3x+2y203x+2y\le 20 x0,y0x\ge 0,\,y\ge 0 the optimal solution set is

A

(0,0)(0,\,\,0)

B

(6,0)(6,\,\,0)

C

(4,4)(4,\,\,4)

D

(0,10)(0,\,\,10)

Answer

(4,4)(4,\,\,4)

Explanation

Solution

Given LPP is Maxz=5x+3yMax\,z=5x+3y 2x+y122x+y\le 12 3x+2y203x+2y\le 20 x0,y0x\ge 0,\,\,\,\,\,\,\,\,\,y\ge 0 First we consider all the inequalities as equations.EquationsPoints 2x+y=122x+y=12 (0,12),(6,0)(0,\,\,12),\,\,(6,0) and (0,\,\,10),\,\,\,\,\left( 3x+2y=20 \frac{20}{3},0 \right) Now, plot all these points on a graph paper and make a figure.For intersection point P, solve both equation of lines, we get \begin{aligned} & 4x+2y=24 \\\ & 3x+2y=20 \\\ & -\,\,\,\,\,\,\,\,\,\,-\,\,\,\,\,\,\,\,\,- \\\ & \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_ \\\ & -5x=-6 \\\ \end{aligned} \Rightarrow x=65x=\frac{6}{5} and then y=225y=\frac{22}{5} \therefore Convex region is TSQD with extreme point T(0,8),S(1,5),Q(2,4)T(0,8),\,\,S(1,5),\,Q(2,4) and D(10,0)D(10,0) . Now, apply corner point methodPointsObjective function Max Z=5x+3yZ=5x+3y O(0,0)O(0,0) 5×0+3×0=05\times 0+3\times 0=0 B(0,10)B(0,10) 5×0+3×10=305\times 0+3\times 10=30 P(4,4)P(4,4) 5×4+3×4=32(max)5\times 4+3\times 4=32(\max ) A(6,0)A(6,0) 5×6+3×0=305\times 6+3\times 0=30 \therefore Optimal solution set is (4,4)(4,4) on which the objective function is maximize.