Solveeit Logo

Question

Question: For the given function \[f\left( x \right) = \sqrt {{{\log }_x}\left( {\cos 2\pi x} \right)} \]. Dom...

For the given function f(x)=logx(cos2πx)f\left( x \right) = \sqrt {{{\log }_x}\left( {\cos 2\pi x} \right)} . Domain of the function is:
A.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},1} \right) \cup \left( {\dfrac{5}{4},\dfrac{7}{4}} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
B.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},1} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
C.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{1}{4},1} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
D.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},\dfrac{3}{2}} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}

Explanation

Solution

Hint : In this question, we need to determine the domain of the given function. For this, we will use the concept of domain such that it is the value of the function where the function is defined. Domain of a function is the set of all possible inputs for the function.

Complete step-by-step answer :
Given the function f(x)=logx(cos2πx)f\left( x \right) = \sqrt {{{\log }_x}\left( {\cos 2\pi x} \right)}
Here base of the function a=xa = x
Number b=cos2πxb = \cos 2\pi x
We know the logarithmic function is defined whenb>1b > 1,0<b<10 < b < 1or b=1b = 1, but since the value of a cosine function lies in between 1<cos2πx<1 - 1 < \cos 2\pi x < 1, hence we can say in this function only the case b=1b = 1 is valid and hence its base is defined whenx0,1x \ne 0,1
Now since the cosine function is in square root so the square root is defined when logx(cos2πx)0{\log _x}\left( {\cos 2\pi x} \right) \geqslant 0, now by taking logarithm inverse we get the function

(cos2πx)e0 (cos2πx)1  \Rightarrow \left( {\cos 2\pi x} \right) \geqslant {e^0} \\\ \Rightarrow \left( {\cos 2\pi x} \right) \geqslant 1 \;

We can also write this as
2πx2nπ2\pi x \geqslant 2n\pi
Hence we get xnx \geqslant n
So from the above cases we can conclude the basex0,1x \ne 0,1, logx(cos2πx)0{\log _x}\left( {\cos 2\pi x} \right) \geqslant 0, so we can say the domain of the functionf(x)=logx(cos2πx)f\left( x \right) = \sqrt {{{\log }_x}\left( {\cos 2\pi x} \right)} will be equal to \left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},1} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
So, the correct answer is “Option B”.

Note : The domain of the function logab{\log _a}b will be positive when it’s both the base and number is a>1,b>1a > 1,b > 1or when the value of the base and the number lies in between 0<a<1,0<b<10 < a < 1,0 < b < 1and it will be equal to zero when then number b=1b = 1and a0,1a \ne 0,1.