Question
Question: For the given function \[f\left( x \right) = \sqrt {{{\log }_x}\left( {\cos 2\pi x} \right)} \]. Dom...
For the given function f(x)=logx(cos2πx). Domain of the function is:
A.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},1} \right) \cup \left( {\dfrac{5}{4},\dfrac{7}{4}} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
B.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},1} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
C.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{1}{4},1} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
D.\left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},\dfrac{3}{2}} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
Solution
Hint : In this question, we need to determine the domain of the given function. For this, we will use the concept of domain such that it is the value of the function where the function is defined. Domain of a function is the set of all possible inputs for the function.
Complete step-by-step answer :
Given the function f(x)=logx(cos2πx)
Here base of the function a=x
Number b=cos2πx
We know the logarithmic function is defined whenb>1,0<b<1or b=1, but since the value of a cosine function lies in between −1<cos2πx<1, hence we can say in this function only the case b=1 is valid and hence its base is defined whenx=0,1
Now since the cosine function is in square root so the square root is defined when logx(cos2πx)⩾0, now by taking logarithm inverse we get the function
We can also write this as
2πx⩾2nπ
Hence we get x⩾n
So from the above cases we can conclude the basex=0,1, logx(cos2πx)⩾0, so we can say the domain of the functionf(x)=logx(cos2πx) will be equal to \left( {0,\dfrac{1}{4}} \right) \cup \left( {\dfrac{3}{4},1} \right) \cup \left\\{ {x:x \in N,x \leqslant 2} \right\\}
So, the correct answer is “Option B”.
Note : The domain of the function logab will be positive when it’s both the base and number is a>1,b>1or when the value of the base and the number lies in between 0<a<1,0<b<1and it will be equal to zero when then number b=1and a=0,1.