Solveeit Logo

Question

Question: For the given function \( f\left( x \right) = {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1...

For the given function f(x)=(sinxsina)1xaf\left( x \right) = {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} if xax \ne a and f(x)=kf\left( x \right) = k if x=ax = a and f(x)f\left( x \right) is continuous at x=ax = a then k=k =
(A) etana{e^{\tan a}}
(B) ecota{e^{\cot a}}
(C) ea{e^a}
(D) e1/a{e^{1/a}}

Explanation

Solution

Hint : This question is based on Limits and Derivatives. The condition of the continuity of a function is that the limit of the function should exist. To solve this question, we have to arrange this expression in such a way that it satisfies the condition of the continuity and then substitute the limit value of the function and find the value of kk .

Complete step-by-step answer :
Given:
f(x)=(sinxsina)1xaf\left( x \right) = {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} if xax \ne a and,
f(x)=kf\left( x \right) = k if x=ax = a
Also, it is given that f(x)f\left( x \right) is continuous at x=ax = a . It means that-
limxa(sinxsina)1xa=k\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = k
If we substitute x=ax = a in this equation we get,
f(a)=(sinasina)1aa f(a)=1 f\left( a \right) = {\left( {\dfrac{{\sin a}}{{\sin a}}} \right)^{\dfrac{1}{{a - a}}}}\\\ f\left( a \right) = {1^\infty }
We cannot solve this expression by simple substitution. So, we have to write this expression in such a way that it can be solved easily. Now we know that if any expression reduces to 1{1^\infty } form we can use this formula –
limxa[f(x)]g(x)=elimxag(x)[f(x)1]\mathop {\lim }\limits_{x \to a} {\left[ {f\left( x \right)} \right]^{g\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to a} g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}
So now, substituting the values into this formula we have –
limxa(sinxsina)1xa=elimxa1xa(sinxsina1) limxa(sinxsina)1xa=elimxa1xa(sinxsinasina) \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\mathop {\lim }\limits_{x \to a} \dfrac{1}{{x - a}}\left( {\dfrac{{\sin x}}{{\sin a}} - 1} \right)}}\\\ \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\mathop {\lim }\limits_{x \to a} \dfrac{1}{{x - a}}\left( {\dfrac{{\sin x - \sin a}}{{\sin a}}} \right)}}
We know the formula for (sinxsina)=2cos(x+a2)sin(xa2)\left( {\sin x - \sin a} \right) = 2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)
So, substituting this formula in the equation we get,
limxa(sinxsina)1xa=e1sinalimxa(2cos(x+a2)sin(xa2)xa) limxa(sinxsina)1xa=e1sinalimxa(cos(x+a2)sin(xa2)(xa2)) \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{1}{{\sin a}}\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{x - a}}} \right)}}\\\ \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{1}{{\sin a}}\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{\left( {\dfrac{{x - a}}{2}} \right)}}} \right)}}
Now we know the rule that
limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1
So now we have to change the limit, then assume xa=t(suppose)x - a = t{\rm{ (suppose)}}
The limit xax \to a changes to xa0x - a \to 0 or t0t \to 0
Now we can apply this rule in the expression above. So, we have-
limxa(sinxsina)1xa=ecos(a+a2)sina(limt0sin(t2)(t2)) limxa(sinxsina)1xa=ecosasina(limt0sin(t2)(t2)) limxa(sinxsina)1xa=ecota×1 limxa(sinxsina)1xa=ecota \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{{\cos \left( {\dfrac{{a + a}}{2}} \right)}}{{\sin a}}\left( {\mathop {\lim }\limits_{t \to 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right)}}} \right)}}\\\ \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{{\cos a}}{{\sin a}}\left( {\mathop {\lim }\limits_{t \to 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right)}}} \right)}}\\\ \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\cot a \times 1}}\\\ \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\cot a}}
Therefore, the value of kk is ecota{e^{\cot a}}
So, the correct answer is “Option B”.

Note : It should be noted that for a function to be continuous the limit of the function should exist and the value of the Right-hand limit should be equal to the Left-hand limit.
For example, if a function is continuous at point x=ax = a then
limxaf(x)\mathop {\lim }\limits_{x \to a} f\left( x \right) exists and
limxaf(x)=f(a)\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right)