Solveeit Logo

Question

Question: For the given expression prove that LHS is equal to the RHS. The expression is: \[sin\;\theta \lef...

For the given expression prove that LHS is equal to the RHS. The expression is:
sin  θ(1+tan  θ)+cos  θ  (1+cot  θ  )=  sec  θ+  cosec  θsin\;\theta \left( 1+tan\;\theta \right)+cos\;\theta \;\left( 1+cot\;\theta \; \right)=\;sec\;\theta +\;cosec\;\theta

Explanation

Solution

Hint: Using the identity sin2θ+cos2θ  =1si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1, 1cosθ=secθand1sinθ=cosec  θ\dfrac{1}{\cos \theta }=\sec \theta \,\,and\,\,\,\dfrac{1}{\sin \theta }=cosec\;\theta we can simplify the LHS and make it equal to the RHS.

Complete step by step answer:
In the given problem, we have to prove that sin  θ(1+tan  θ)+cos  θ  (1+cot  θ  )=  sec  θ+  cosec  θsin\;\theta \left( 1+tan\;\theta \right)+cos\;\theta \;\left( 1+cot\;\theta \; \right)=\;sec\;\theta +\;cosec\;\theta
So now we will start with the LHS.
sin  θ(1+tan  θ)+cos  θ  (1+cot  θ  )\Rightarrow sin\;\theta \left( 1+tan\;\theta \right)+cos\;\theta \;\left( 1+cot\;\theta \; \right)
Now, on simplifying we have:
sin  θ(1+tan  θ)+cos  θ  (1+cot  θ  )\Rightarrow sin\;\theta \left( 1+tan\;\theta \right)+cos\;\theta \;\left( 1+cot\;\theta \; \right)
Now, it is known that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cot  θ=cosθsinθcot\;\theta =\dfrac{\cos \theta }{\sin \theta }, so we can further simplify, as follows:
sinθ(1+sinθcosθ)+cosθ(1+cosθsinθ)\Rightarrow \sin \theta \left( 1+\dfrac{\sin \theta }{\cos \theta } \right)+\cos \theta \left( 1+\dfrac{\cos \theta }{\sin \theta } \right)
Now, taking the LCM and simplifying the numerator part, we have:

& \Rightarrow \dfrac{\left( \cos \theta +\sin \theta \right){{\cos }^{2}}\theta +\left( \cos \theta +\sin \theta \right){{\sin }^{2}}\theta }{\cos \theta \sin \theta } \\\ & \Rightarrow \dfrac{\left( \cos \theta +\sin \theta \right)({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )}{\cos \theta \sin \theta } \\\ & \Rightarrow \dfrac{\left( \cos \theta +\sin \theta \right)(1)}{\cos \theta \sin \theta }\,\,\,\,\,\,\,\,\,\,\,\,\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\\ & \Rightarrow \dfrac{1}{\cos \theta }+\dfrac{1}{\sin \theta } \\\ & \Rightarrow \;sec\;\theta +\;cosec\;\theta \,\,\,\,\,\,\,\,\,\,\because \dfrac{1}{\cos \theta }=\sec \theta \,\,and\,\,\,\dfrac{1}{\sin \theta }=cosec\;\theta \\\ & \Rightarrow RHS \\\ \end{aligned}$$ So, here we have finally proved that the LHS is equal to the RHS. Hence, $$sin\;\theta \left( 1+tan\;\theta \right)+cos\;\theta \;\left( 1+cot\;\theta \; \right)=\;sec\;\theta +\;cosec\;\theta $$ is proved. Note: It is important that we don’t get confused between $$\sec \theta $$ and $$\cos \theta $$. Here they are reciprocal of each other. Also, it can be noted that we can have any value of $$\theta $$, as $$\theta $$ value will not affect the identity $$si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1$$.