Solveeit Logo

Question

Question: For the given expression prove that LHS is equal to the RHS. The expression is: \[si{{n}^{6}}\thet...

For the given expression prove that LHS is equal to the RHS. The expression is:
sin6θ+cos6θ  +3  sin2θcos2θ    =1si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1

Explanation

Solution

Hint: Using the identity sin2θ+cos2θ  =1si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1, and the formula (a+b)3=a3+b3+3ab(a+b){{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b) we can simplify the LHS and make it equal to the RHS.

Complete step-by-step answer:
In the given problem, we have to prove that sin6θ+cos6θ  +3  sin2θcos2θ    =1si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1
So now we will start with the LHS.
sin6θ+cos6θ  +3  sin2θcos2θ\Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta
Now, it is know that sin2θ+cos2θ  =1si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1, so we can write above expression as:

& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \\\ & \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\\ \end{aligned}$$ Now, let $$si{{n}^{2}}\theta =a$$ and $${{\cos }^{2}}\theta =b$$, so we will have LHS as: $$\begin{aligned} & \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\\ & \Rightarrow {{a}^{3}}+{{b}^{3}}+3ab(a+b) \\\ & \Rightarrow {{(a+b)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because {{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)) \\\ \end{aligned}$$ So substituting back the value of a and b, we have: $$\begin{aligned} & \Rightarrow {{(a+b)}^{3}} \\\ & \Rightarrow {{(si{{n}^{2}}\theta +{{\cos }^{2}}\theta )}^{3}} \\\ & \Rightarrow {{(1)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1) \\\ & \Rightarrow 1 \\\ & = RHS \\\ \end{aligned}$$ Hence, we have proved that LHS is equal to RHS in $$si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1$$. Hence proved. Note: When we use the substitution of the trigonometric ratios, in order to simplify the given trigonometric expression, then it is important to substitute back and get the result in the original trigonometric ratios form. These types of problems can be solved using basic trigonometric and algebraic identities.