Solveeit Logo

Question

Question: For the given equation, find the number of solutions in has, \(\sin x + 2\sin 2x - \sin 3x = 3,x \...

For the given equation, find the number of solutions in has,
sinx+2sin2xsin3x=3,x(0,π)\sin x + 2\sin 2x - \sin 3x = 3,x \in \left( {0,\pi } \right)
(A) Infinitely many solutions (B) three solutions (C) one solution (D) no solution

Explanation

Solution

Hint: Use sin2x=2sinxcosx\sin 2x = 2\sin x\cos x and sin3x=3sinx4sin3x\sin 3x = 3\sin x - 4{\sin ^3}x and then simplify the equation.
According to question, the given equation is:
sinx+2sin2xsin3x=3\sin x + 2\sin 2x - \sin 3x = 3
We know that, sin2x=2sinxcosx\sin 2x = 2\sin x\cos x and sin3x=3sinx4sin3x\sin 3x = 3\sin x - 4{\sin ^3}x, using these two results, we’ll get:
sinx+2(2sinxcosx)(3sinx4sin3x)=3 sinx+4sinxcosx3sinx+4sin3x=3 sinx[1+4cosx3+4sin2x]=3 sinx[4cosx+4sin2x2]=3  \Rightarrow \sin x + 2(2\sin x\cos x) - (3\sin x - 4{\sin ^3}x) = 3 \\\ \Rightarrow \sin x + 4\sin x\cos x - 3\sin x + 4{\sin ^3}x = 3 \\\ \Rightarrow \sin x[1 + 4\cos x - 3 + 4{\sin ^2}x] = 3 \\\ \Rightarrow \sin x[4\cos x + 4{\sin ^2}x - 2] = 3 \\\
Now, putting sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x we’ll get:

sinx[4cosx+44cos2x2]=3 sinx[2(4cos2x4cosx)]=3 sinx[2(4cos2x4cosx+1)+1]=3 sinx[3(2cosx1)2]=3  \Rightarrow \sin x[4\cos x + 4 - 4{\cos ^2}x - 2] = 3 \\\ \Rightarrow \sin x[2 - (4{\cos ^2}x - 4\cos x)] = 3 \\\ \Rightarrow \sin x[2 - (4{\cos ^2}x - 4\cos x + 1) + 1] = 3 \\\ \Rightarrow \sin x[3 - {(2\cos x - 1)^2}] = 3 \\\

We know that, 3(2cosx1)233 - {(2\cos x - 1)^2} \geqslant 3 Therefore, for the above equation to satisfy, we have:
sinx=1\Rightarrow \sin x = 1 and (2cosx1)2=0{(2\cos x - 1)^2} = 0
x=π2\Rightarrow x = \frac{\pi }{2} and cosx=12\cos x = \frac{1}{2}
x=π2\Rightarrow x = \frac{\pi }{2} and x=π3x = \frac{\pi }{3}
But xx cannot have two values at the same time. Therefore, the above equation will not have any solution. And option (D) is correct.

Note: Both sinx=1\sin x = 1 and cosx=12\cos x = \frac{1}{2} cannot satisfy at the same time. If in any equation, the value of sinx\sin x is coming out to be 1,1, for any value of x,x, then the value of cosx\cos x must be 00 for that particular x.x.