Question
Question: For the function $f(x) = (x^2 + bx + c)e^x$ and $g(x) = (x^2 + bx + c)e^x + e^{x(2x + b)}$. Which of...
For the function f(x)=(x2+bx+c)ex and g(x)=(x2+bx+c)ex+ex(2x+b). Which of the following holds good?

A
if f(x)>0 for all real x⇏g(x)>0
B
if f(x)>0 for all real x⇒g(x)>0
C
if g(x)>0 for all real x⇒f(x)>0
D
if g(x)>0 for all real x⇏f(x)>0
Answer
if f(x)>0 for all real x⇒g(x)>0
Explanation
Solution
Given f(x)=(x2+bx+c)ex and g(x)=(x2+bx+c)ex+ex(2x+b), we can rewrite g(x) as g(x)=f(x)+ex(2x+b).
Since ex(2x+b)>0 for all real x, if f(x)>0 for all real x, then g(x)=f(x)+ex(2x+b)>0 for all real x.
Therefore, if f(x)>0 for all real x, then g(x)>0 for all real x.