Question
Mathematics Question on Derivatives
For the function f(x) = 100x100 + 99x99 + ......+ 2x2+ x+1. Prove that f ′(1)= 100 f'(0 )
Answer
The given function f(x)=100x100 + 99x99 + ... + 2x2 + x + 1
dxd f(x) = dxd[100x100 + 99x99 + ... + 2x2 + x + 1]
dxdf(x) = dxd(100x100) + dxd(99x99) + ...+ dxd (2x2) + dxd(x) + dxd(1)
On using theorem dxd(xn) = nxn-1, we obtain
dxd f(x) = 1100100x99 + 9999x98 + ...+ 22x + 1+0
= x99 + x98+ ... + x+1
∴f'(x) = x99 + x98+ ... + x+1
At x = 0,
f'(0)=1
At x=1,
ƒ'(1)=199+198+...+1+1=[1+1+...+1+1] 100 terms = 1×100=100
Thus, f'(1)=100× f'(0)