Solveeit Logo

Question

Mathematics Question on Derivatives

For the function f(x) = x100100\frac{x^{100}}{100} + x9999\frac{x^{99}}{99} + ......+ x22\frac{x^2}{2}+ x+1. Prove that f ′(1)= 100 f'(0 )

Answer

The given function f(x)=x100100\frac{x^{100}}{100} + x9999\frac{x^{99}}{99} + ... + x22\frac{x^2}{2} + x + 1
ddx\frac{d}{dx} f(x) = ddx\frac{d}{dx}[x100100\frac{x^{100}}{100} + x9999\frac{x^{99}}{99} + ... + x22\frac{x^2}{2} + x + 1]
ddx\frac{d}{dx}f(x) = ddx\frac{d}{dx}(x100100\frac{x^{100}}{100}) + ddx\frac{d}{dx}(x9999\frac{x^{99}}{99}) + ...+ ddx\frac{d}{dx} (x22\frac{x^2}{2}) + ddx\frac{d}{dx}(x) + ddx\frac{d}{dx}(1)
On using theorem ddx\frac{d}{dx}(xn) = nxn-1, we obtain
ddx\frac{d}{dx} f(x) = 1100x99100\frac{100x^{99}}{100} + 99x9899\frac{99x^{98}}{99} + ...+ 2x2\frac{2x}{2} + 1+0
= x99 + x98+ ... + x+1
∴f'(x) = x99 + x98+ ... + x+1
At x = 0,
f'(0)=1
At x=1,
ƒ'(1)=199+198+...+1+1=[1+1+...+1+1] 100 terms = 1×100=100
Thus, f'(1)=100× f'(0)