Solveeit Logo

Question

Mathematics Question on Application of derivatives

For the function f(x)=43x38x2+16x+5,f(x) = \frac {4}{3} x^3-8x^2+16x+5, x=2isapointofx = 2\,is \,a\,point\, of

A

local maxima

B

local minima

C

point of inflexion

D

None of these

Answer

point of inflexion

Explanation

Solution

f(x)=43x38x2+16x+5(i)f \left(x\right)=\frac{4}{3} x^{3}-8x^{2}+16x+5 \ldots\left(i\right)
There will be a point of inflexion at point xx
if (d2ydx2)at(x=2)=0\left(\frac{d^{2}y}{dx^{2}}\right)_{at \left(x=2\right)} =0, but d3ydx30\frac{d^{3}y}{dx^{3}} \ne0
From E (i)\left(i\right), f(x)=4x216x+16f'\left(x\right)=4x^{2}-16x+16
f(x)=8x16f''\left(x\right)=8x-16
f(2)=1616=0f''\left(2\right)=16-16=0
and f(x)=80f'' \left(x\right)=8\ne0
Hence, at x=2,f(x)x = 2, f\left(x \right) shown point of inflexion