Solveeit Logo

Question

Mathematics Question on Absolute maxima and Absolute minima

For the function f(x)=2x39x2+12x5,x[0,3]f(x) = 2x^3 - 9x^2 + 12x - 5, x \in [0, 3], match List-I with List-II:List-IList-II
(A) Absolute maximum value(I) 3
(B) Absolute minimum value(II) 0
(C) Point of maxima(III) -5
(D) Point of minima(IV) 4
A

(A) - (IV), (B) - (II), (C) - (I), (D) - (III)

B

(A) - (II), (B) - (III), (C) - (I), (D) - (IV)

C

(A) - (IV), (B) - (III), (C) - (II), (D) - (I)

D

(A) - (IV), (B) - (III), (C) - (I), (D) - (II)

Answer

(A) - (IV), (B) - (III), (C) - (I), (D) - (II)

Explanation

Solution

Differentiate f(x)=2x39x2+12x5f(x) = 2x^3 - 9x^2 + 12x - 5 to find f(x)=6x218x+12f'(x) = 6x^2 - 18x + 12.
Solve f(x)=0f'(x) = 0 to find critical points within the interval [0,3][0, 3].
Evaluate f(x)f(x) at the endpoints x=0x = 0 and x=3x = 3, and at the critical points, to determine the absolute maximum and minimum values.