Question
Mathematics Question on Absolute maxima and Absolute minima
For the function f(x)=2x3−9x2+12x−5,x∈[0,3], match List-I with List-II:List-I | List-II |
---|---|
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |
A
(A) - (IV), (B) - (II), (C) - (I), (D) - (III)
B
(A) - (II), (B) - (III), (C) - (I), (D) - (IV)
C
(A) - (IV), (B) - (III), (C) - (II), (D) - (I)
D
(A) - (IV), (B) - (III), (C) - (I), (D) - (II)
Answer
(A) - (IV), (B) - (III), (C) - (I), (D) - (II)
Explanation
Solution
Differentiate f(x)=2x3−9x2+12x−5 to find f′(x)=6x2−18x+12.
Solve f′(x)=0 to find critical points within the interval [0,3].
Evaluate f(x) at the endpoints x=0 and x=3, and at the critical points, to determine the absolute maximum and minimum values.