Solveeit Logo

Question

Mathematics Question on Functions

For the function f(x)=x100100+x9999+...x22+x+1,f\left(x\right)= \frac{x^{100}}{100} + \frac{x^{99}}{99} + ... \frac{x^{2}}{2} + x + 1 , f ' (1) = mf' (0), where m is equal to

A

50

B

0

C

100

D

200

Answer

100

Explanation

Solution

Given,
f(x)=x100100+x9999++x22+x+1f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1
f(x)=100x99100+99x9899++2x2+1+0\Rightarrow f'(x)=\frac{100 x^{99}}{100}+\frac{99 x^{98}}{99}+\ldots+\frac{2 x}{2}+1+0 f(x)=x99+x98++x+1\Rightarrow f'(x)=x^{99}+x^{98}+\ldots+x+1\ldots(i)
Putting x=1x =1, we get
f(1)=(1)99+198++1+1100 times =1+1+1+1+1100 times f'(1)=\underbrace{(1)^{99}+1^{98}+\ldots+1+1}_{100 \text { times }}=\underbrace{1+1+1 \ldots+1+1}_{100 \text { times }}
f(1)=100\Rightarrow f'(1)=100 \ldots (ii)
Again, putting x=0x=0, we get
f(0)=0+0++0+1f'(0)=0+0+\ldots+0+1
f(0)=1\Rightarrow f' (0) = 1 \ldots (iii)
From eqs. (ii) and (iii), we get;
f(1)=100f(0)f'(1)=100 f'(0)
Hence, m=100m=100