Solveeit Logo

Question

Question: For the following reaction: \({{K}_{P}}=1.7\times {{10}^{7}}\) at 25\(^{o}C\) \[A{{g}^{+}}(a...

For the following reaction: KP=1.7×107{{K}_{P}}=1.7\times {{10}^{7}} at 25oC^{o}C
Ag+(aq)+2NH3(g)[Ag(NH3)2]+A{{g}^{+}}(aq)+2N{{H}_{3}}(g)\rightleftarrows {{\left[ Ag{{(N{{H}_{3}})}_{2}} \right]}^{+}}
What value of ΔGo\Delta {{G}^{o}} in kJ?
(A) -41.2
(B) -17.9
(C) +17.9
(D) +41.2

Explanation

Solution

Relation between Gibbs free energy (ΔGo\Delta {{G}^{o}}) of a reaction and equilibrium constant (Kp{{K}_{p}}) is given as ΔGo=RTln(Kp)\Delta {{G}^{o}}=-RT\ln ({{K}_{p}}).
Since lne=2.303log10{{\ln }_{e}}=2.303{{\log }_{10}}, expression for ΔGo\Delta {{G}^{o}} is also written as ΔGo=2.303RTlog(Kp)\Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}}).
Value of universal gas constant, R = 8.314JK1mol18.314J{{K}^{-1}}mo{{l}^{-1}}

Complete step by step answer:
The given chemical reaction is
Ag+(aq)+2NH3(g)[Ag(NH3)2]+A{{g}^{+}}(aq)+2N{{H}_{3}}(g)\rightleftarrows {{\left[ Ag{{(N{{H}_{3}})}_{2}} \right]}^{+}}
We have been given the equilibrium constant of the reaction in terms of pressure, KP=1.7×107{{K}_{P}}=1.7\times {{10}^{7}}
Given, temperature of the reaction, T = 25oC^{o}C.
To convert temperature in Celsius (oC^{o}C) to Kelvin (K),
T (K) = T (oC^{o}C ) + 273.15
T (K) = 25 + 273.15 = 298.15 K

We know that Gibbs free energy of a reaction is given as, ΔGo=2.303RTlog(Kp)\Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}})
Substituting R = 8.314JK1mol18.314J{{K}^{-1}}mo{{l}^{-1}}, T = 298.15 K and KP=1.7×107{{K}_{P}}=1.7\times {{10}^{7}} in the above expression, we get
ΔGo=2.303RTlog(Kp) ΔGo=2.303×8.314JK1mol1×298.15K×log(1.7×107) ΔGo=5708.72×log(1.7×107) \begin{aligned} & \Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}}) \\\ & \Delta {{G}^{o}}=-2.303\times 8.314J{{K}^{1}}mo{{l}^{-1}}\times 298.15K\times \log (1.7\times {{10}^{7}}) \\\ & \Delta {{G}^{o}}=-5708.72\times \log (1.7\times {{10}^{7}}) \\\ \end{aligned}
Applying log(mn)=logm+logn\log (mn)=\log m + \log n and logmn=nlogm\log {{m}^{n}}=n\log m, we can simplify the above equation as
ΔGo=5708.72Jmol1×(log1.7+log107) ΔGo=5708.72Jmol1×(log1.7+7log10) \begin{aligned} & \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (\log 1.7+\log {{10}^{7}}) \\\ & \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (\log 1.7+7\log 10) \\\ \end{aligned}
On substituting log1010=1{{\log }_{10}}10=1and log (1.7) = 0.23045, the above equation becomes
ΔGo=5708.72Jmol1×(0.23045+7×1) ΔGo=5708.72Jmol1×7.23045 ΔGo=41276.60Jmol1 \begin{aligned} & \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (0.23045+7\times 1) \\\ & \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times 7.23045 \\\ & \Delta {{G}^{o}}=-41276.60Jmo{{l}^{-1}} \\\ \end{aligned}

To convert the free energy in kilojoules, divide it by 103{{10}^{3}}.
Since 1 kJ = 1000 J or 1 J = 11000\dfrac{1}{1000} kJ.
Thus, we have -41276.60 J = 41276.601000\dfrac{-41276.60}{1000} kJ = -41.27660 kJ.
Therefore, the ΔGo\Delta {{G}^{o}} of the given reaction = 41.27660kJmol141.27660kJmo{{l}^{-1}}.
So, the correct answer is “Option A”.

Note: Note that when Kp>1{{K}_{p}}>1, then ΔGo<0\Delta {{G}^{o}}<0. Negative value of Gibbs free energy means that the reaction is spontaneous and proceeds in the forward direction. Carefully solve the question to avoid calculation errors.