Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

For the following reaction;
2X+YkP\begin{array}{l}2X + Y\overset{k}{\rightarrow}P\end{array}

The rate of reaction is
d[P]dt=k[X]\begin{array}{l}\frac{d[P]}{dt} = k[X]\end{array}
Two moles of X are mixed with one mole of Y to make 1.0 L of solution. At 50 s, 0.5 mole of Y is left in the reaction mixture. The correct statement(s) about the reaction is(are). (Use: ln 2 = 0.693)

A

The rate constant, k, of the reaction is 13.86 × 10-4 s-1.

B

Half-life of X is 50 s.

C

At 50 s, – d[X] / dt = 13.86 × 10-3 mol L-1 s-1.

D

At 100 s, d[Y] / dt = 3.46 × 10-3 mol L-1 s-1.

Answer

Half-life of X is 50 s.

Explanation

Solution

rate =d[P]dt=k[X]\begin{array}{l}\frac{d[P]}{dt} = k[X]\end{array}
2X+YP2X + Y → P
2 mole 1 mole
1 mole 0.5 mole 0.5 mole
d[X]dt=k1[X]=2k[X]2k=k1- \frac{{d[X]}}{{dt}} = k_1[X] = 2k[X] \Rightarrow 2k = k_1
d[Y]dt=k2[X]=2k[X]k2=k-\frac{d[Y]}{dt} = k_2[X] = 2k[X] \Rightarrow k_2 = k
2k=150ln22k = \frac{1}{50} \ln 2
K=1100ln2=0.693×102×s1=50sec1K = \frac{1}{100} \ln 2 = 0.693 \times 10^{-2} \times \text{s}^{-1} = 50 \, \text{sec}^{-1}
At 50 sec,
d[X]dt=2k[X]=2×0.693100×1\frac{d[X]}{dt} = 2k[X] = 2 \times \frac{0.693}{100} \times 1
= 13.86×103molL1s113.86 \times 10^{-3} \, \text{mol} \, \text{L}^{-1} \, \text{s}^{-1}
At 100 sec
d[Y]dt=k2[X]=k[X]×0.693100×12-\frac{d[Y]}{dt} = k_2[X] = k[X] \times \frac{0.693}{100} \times \frac{1}{2}
(Concentration of X after 2 half-lives = ½ M)
=$$3.46 \times 10^{-3} \, \text{mol} \, \text{L}^{-1} \, \text{s}^{-1}