Solveeit Logo

Question

Question: For the following data of bivariate \(n = 25\) \(\Sigma x = 125\) \(\Sigma y = 100\) \(\Sigm...

For the following data of bivariate

n=25n = 25 Σx=125\Sigma x = 125 Σy=100\Sigma y = 100

Σx2=650\Sigma x ^ { 2 } = 650 Σy2=436\Sigma y ^ { 2 } = 436 Σxy=520\Sigma x y = 520

The coefficient of correlation is

A

1/2

B

2/5

C

3/5

D

2/3

Answer

2/3

Explanation

Solution

Proceed with the help of following formula

r=ΣxyΣxΣyn{Σx2(Σx)2n}{Σy2(Σy)2n}r = \frac { \Sigma x y - \frac { \Sigma x \cdot \Sigma y } { n } } { \sqrt { \left\{ \Sigma x ^ { 2 } - \frac { ( \Sigma x ) ^ { 2 } } { n } \right\} \left\{ \Sigma y ^ { 2 } - \frac { ( \Sigma y ) ^ { 2 } } { n } \right\} } } =23\frac { 2 } { 3 }.