Solveeit Logo

Question

Question: For the first order reaction \( {{\text{A}}_{\left( {\text{g}} \right)}} \to {\text{2}}{{\text{B}}_{...

For the first order reaction A(g)2B(g) + C(g){{\text{A}}_{\left( {\text{g}} \right)}} \to {\text{2}}{{\text{B}}_{\left( {\text{g}} \right)}}{\text{ + }}{{\text{C}}_{\left( {\text{g}} \right)}} , the initial pressure is PA{{\text{P}}_{{\text{A}}}} =90 mm Hg. Then pressure after 10 minutes is found to be 180 mm Hg. The half-life period of the reaction is:
(A) 1.15 x 10 - 3sec1{\text{1}}{\text{.15 x 1}}{{\text{0}}^{{\text{ - 3}}}}{\sec ^{ - 1}}
(B) 600 sec
(C) 3.45 x 10 - 3sec1 {\text{3}}{\text{.45 x 1}}{{\text{0}}^{{\text{ - 3}}}}{\sec ^{ - 1}}
(D) 200 sec

Explanation

Solution

The first order reactions are reactions in which rate of the reaction is directly proportional to the concentration of the reactants. The half life period of a first order reaction is independent of the concentration of the reactants.

Complete step by step solution:
The half-life period of a reaction is the time taken for the concentration of the reactant to reach half of its initial concentration. It is denoted as t1/2{{\text{t}}_{{\text{1/2}}}} and expressed in the unit of time generally in seconds(sec).
For a first order reaction, the half-life of a reaction is given by the following expression,
t1/2 = 0.693k{{\text{t}}_{{\text{1/2}}}}{\text{ = }}\dfrac{{0.693}}{{\text{k}}}
where k is the rate constant of the reaction which is expressed as M(1 - n)s - 1{{\text{M}}^{\left( {{\text{1 - n}}} \right)}}{{\text{s}}^{{\text{ - 1}}}} (n = order of the reaction, M is the unit of mol L - 1{\text{mol }}{{\text{L}}^{{\text{ - 1}}}} ).
For the given first order reaction,
A(g)2B(g) + C(g){{\text{A}}_{\left( {\text{g}} \right)}} \to {\text{2}}{{\text{B}}_{\left( {\text{g}} \right)}}{\text{ + }}{{\text{C}}_{\left( {\text{g}} \right)}}

Initially, at time t =0p00
At equilibriump-2x2xx

Total pressure = P - x + 2x + x = P + 2x{\text{P - x + 2x + x = P + 2x}}
It is given that initial pressure = 90 mm Hg.
And after 10 minutes, Pressure = 180 mm Hg.
P + 2x = 180 {\text{P + 2x = 180 }}
90+ 2x = 180\Rightarrow 90 + {\text{ 2x = 180}}
2x = 90\Rightarrow {\text{2x = }}90
x = 45\Rightarrow {\text{x = }}45
The rate constant of the first order reaction is given by the following expression:
k = 2.303tlogPP - x{\text{k = }}\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}{\text{log}}\dfrac{{\text{P}}}{{{\text{P - x}}}}
k = 2.303600log909045\Rightarrow {\text{k = }}\dfrac{{{\text{2}}{\text{.303}}}}{{600}}{\text{log}}\dfrac{{90}}{{90 - 45}}
k = 2.303600log(2)\Rightarrow {\text{k = }}\dfrac{{{\text{2}}{\text{.303}}}}{{600}}{\text{log(2)}}
k = 1.156 x 10 - 3 sec - 1\Rightarrow {\text{k = }}1.156{\text{ x 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ se}}{{\text{c}}^{{\text{ - 1}}}}

Now substituting the k value in the half-life formula, we get,
t1/2 = 0.693k t1/2 = 0.6931.156 x 10 - 3  t1/2 = 600 sec  {{\text{t}}_{{\text{1/2}}}}{\text{ = }}\dfrac{{0.693}}{{\text{k}}} \\\ \Rightarrow {{\text{t}}_{{\text{1/2}}}}{\text{ = }}\dfrac{{0.693}}{{1.156{\text{ x 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ }}}} \\\ \Rightarrow {{\text{t}}_{{\text{1/2}}}}{\text{ = 600 sec}} \\\
The half-life period of the reaction is 600 seconds. So, the correct option is B.

Note:
Half life of a reaction varies depending upon the order of reaction and therefore may or may not depend upon the concentration.
Here is the formula of half life for common order of reactions:
Zero order reaction
t1/2 = [R0]2k{{\text{t}}_{{\text{1/2}}}}{\text{ = }}\dfrac{{{\text{[}}{{\text{R}}_{\text{0}}}{\text{]}}}}{{{\text{2k}}}}
First order reaction
t1/2 = 0.693k{{\text{t}}_{{\text{1/2}}}}{\text{ = }}\dfrac{{0.693}}{{\text{k}}}
Second order reaction
t1/2 = 1[R0]k{{\text{t}}_{{\text{1/2}}}}{\text{ = }}\dfrac{1}{{{\text{[}}{{\text{R}}_{\text{0}}}{\text{]k}}}}