Solveeit Logo

Question

Question: For the first order reaction, A¾® B. The initial concentration of A is a<sub>0</sub>, hence at any ...

For the first order reaction, A¾® B.

The initial concentration of A is a0, hence at any time t the concentration of B is x and x is given by

A

x = a0( 1 + e–kt)

B

x = a0[1+x+x22!+x33!+]\left\lbrack 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots \right\rbrack

C

x = a0 [x+x22!x33!+]\left\lbrack - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \cdots \right\rbrack

D

x = a0 [kt(kt)22!+(kt)33!]\left\lbrack kt - \frac{(kt)^{2}}{2!} + \frac{(kt)^{3}}{3!} - \cdots \right\rbrack

Answer

x = a0 [kt(kt)22!+(kt)33!]\left\lbrack kt - \frac{(kt)^{2}}{2!} + \frac{(kt)^{3}}{3!} - \cdots \right\rbrack

Explanation

Solution

Rate equation is dxdt\frac{dx}{dt} = k (a0 –x)

\ ln a0(a0x)\frac{a_{0}}{(a_{0} - x)} kt

or (a0x)a0\frac{(a_{0} - x)}{a_{0}} = e–kt

or 1 – xa0\frac{x}{a_{0}} = e–kt

or xa0\frac{x}{a_{0}} = 1 – e–kt

or x = a0 (1 – e–kt )

or x = a0 [1(1kt+(kt)22!(kt)33!+)]\left\lbrack 1–(1 - kt + \frac{(kt)^{2}}{2!} - \frac{(kt)^{3}}{3!} + \cdots) \right\rbrack

or x = a0 [kt(kt)22!+(kt)33!]\left\lbrack kt - \frac{(kt)^{2}}{2!} + \frac{(kt)^{3}}{3!} - \cdots \right\rbrack