Solveeit Logo

Question

Mathematics Question on Determinants

For the equations x+2y+3z=1x + 2y + 3z = 1 , 2x+y+3z=22x + y + 3z = 2 , 5x+5y+9z=45x + 5y + 9z = 4

A

there is only one solution

B

there exists infinitely many solutions

C

there is no solution

D

None of the above

Answer

there is only one solution

Explanation

Solution

Given system of equation is
x+2y+3z=1x + 2y + 3z = 1
2x+y+3z=22x + y + 3z = 2
5x+5y+9z=45x + 5y + 9z = 4
The augmented matrix
[A:B]=[1231 2132 5594]\left[A : B\right]=\left[\begin{matrix}1&2&3&1\\\ 2&1&3&2\\\ 5&5&9&4\end{matrix}\right]
Apply ={R2R22R1 R3R35R1 = \begin{cases} R_{2}\to R_{2}-2R_{1} & \text{} \\\ R_{3}\to R_{3}-5R_{1} & \text{} \end{cases}
[1231 0330 0561]\sim\left[\begin{matrix}1&2&3&1\\\ 0&-3&-3&0\\\ 0&-5&-6&-1\end{matrix}\right]
Apply R3R353R2R_{3}\rightarrow R_{3}-\frac{5}{3}R_{2}
[1231 0330 0011]\sim\left[\begin{matrix}1&2&3&1\\\ 0&-3&-3&0\\\ 0&0&-1&-1\end{matrix}\right]
Here, rank of [A:B]\left[A:B\right] =rank of [A]\left[A\right]
So, the system is consistent
But, rank of [A] \left[A\right] = number of unknowns
Hence, the system have only one solution