Solveeit Logo

Question

Question: For the equation \(\cos ^ { - 1 } x + \cos ^ { - 1 } 2 x + \pi = 0\), the number of real solution is...

For the equation cos1x+cos12x+π=0\cos ^ { - 1 } x + \cos ^ { - 1 } 2 x + \pi = 0, the number of real solution is.

A

1

B

2

C

0

D

\infty

Answer

0

Explanation

Solution

cos12x=πcos1x\cos ^ { - 1 } 2 x = - \pi - \cos ^ { - 1 } x

2x=cos(π+cos1x)\Rightarrow 2 x = \cos \left( \pi + \cos ^ { - 1 } x \right)

2x=cosπ(coscos1x)sinπsin(cos1x)2 x = \cos \pi \left( \cos \cos ^ { - 1 } x \right) - \sin \pi \sin \left( \cos ^ { - 1 } x \right)

2x=xx=02 x = - x \Rightarrow x = 0

But x=0x = 0 does not satisfy the given equation.

No solution will exist.