Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the particular solution satisfying the given condition:2xy+y22x2dydx=0;y=22xy+y^2-2x^2\frac{dy}{dx}=0;y=2 when x=1x=1

Answer

2xy+y22x2dydx=02xy+y^2-2x^2\frac{dy}{dx}=0
2x2dydx=2xy+y2⇒2x^2\frac{dy}{dx}=2xy+y^2
dydx=2xy+y22x2...(1)⇒\frac{dy}{dx}=\frac{2xy+y^2}{2x^2}...(1)
Let F(x,y)=2xy+y22x2.F(x,y)=\frac{2xy+y^2}{2x^2}.
F(λx,λy)=2(λx)(λy)+(λy)22(λx)2=2xy+y22x2=λ°.F(x,y)∴F(λx,λy)=\frac{2(λx)(λy)+(λy)^2}{2(λx)^2}=\frac{2xy+y^2}{2x^2}=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the value of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=2x(vx)+(vx)22x2v+x\frac{dv}{dx}=\frac{2x(vx)+(vx)^2}{2x^2}
v+xdvdx=2v+v22⇒v+x\frac{dv}{dx}=\frac{2v+v^2}{2}
v+xdvdx=v+v22⇒v+x\frac{dv}{dx}=\frac{v+v^2}{2}
2v2dv=dxx⇒\frac{2}{v^2}dv=\frac{dx}{x}
Integrating both sides,we get:
2.v2+12+1=logx+C\frac{2.v-2+1}{-2+1}=log|x|+C
2v=logx+C⇒\frac{-2}{v}=log|x|+C
2yx=logx+C⇒\frac{-2}{\frac{y}{x}}=log|x|+C
2xy=logx+C...(2)⇒\frac{-2x}{y}=log|x|+C...(2)
Now,y=2 at x=1.
1=log(1)+C⇒-1=log(1)+C
C=1⇒C=-1
Substituting C=-1 in equation(2),we get:
2xy=logx1\frac{-2x}{y}=log|x|-1
2xy=1logx⇒\frac{2x}{y}=1-log|x|
y=2x1logx,(x0,xe)⇒y=\frac{2x}{1-log|x|},(x≠0,x≠e)
This is the required solution of the given differential equation.