Question
Mathematics Question on Differential equations
For the differential equations, find the particular solution satisfying the given condition:2xy+y2−2x2dxdy=0;y=2 when x=1
2xy+y2−2x2dxdy=0
⇒2x2dxdy=2xy+y2
⇒dxdy=2x22xy+y2...(1)
Let F(x,y)=2x22xy+y2.
∴F(λx,λy)=2(λx)22(λx)(λy)+(λy)2=2x22xy+y2=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the value of y and dxdy in equation(1),we get:
v+xdxdv=2x22x(vx)+(vx)2
⇒v+xdxdv=22v+v2
⇒v+xdxdv=2v+v2
⇒v22dv=xdx
Integrating both sides,we get:
−2+12.v−2+1=log∣x∣+C
⇒v−2=log∣x∣+C
⇒xy−2=log∣x∣+C
⇒y−2x=log∣x∣+C...(2)
Now,y=2 at x=1.
⇒−1=log(1)+C
⇒C=−1
Substituting C=-1 in equation(2),we get:
y−2x=log∣x∣−1
⇒y2x=1−log∣x∣
⇒y=1−log∣x∣2x,(x=0,x=e)
This is the required solution of the given differential equation.