Question
Mathematics Question on Differential equations
For the differential equations, find the particular solution satisfying the given condition:dxdy−xy+cosec(xy)=0;y=0 when x=1
dxdy−xy+cosec(xy)=0
⇒dxdy=xy−cosec(xy)...(1)
Let F(x,y)=xy−cosec(xy).
∴F(λx,λy)=λxλy−cosec(λxλy)
⇒F(λx,λy)=y/x-cosec(y/x)=F(x,y)=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=v−cosecv
⇒cosecv−dv=x−dx
Integrating both sides we get:
cosv=logx+logC=log∣Cx∣
⇒cos(xy)=log∣Cx∣...(2)
This is the required solution of the given differential equation.
Now,y=0 at x=1.
⇒cos(0)=logC
⇒1=logC
⇒C=e1=e
Substituting C=e in equation(2),we get:
cos(xy)=log∣(ex)∣
This is the required solution of the given differential equation.