Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the particular solution satisfying the given condition:dydxyx+cosec(yx)=0;y=0\frac{dy}{dx}-\frac{y}{x}+cosec(\frac{y}{x})=0;y=0 when x=1x=1

Answer

dydxyx+cosec(yx)=0\frac{dy}{dx}-\frac{y}{x}+cosec(\frac{y}{x})=0
dydx=yxcosec(yx)...(1)⇒\frac{dy}{dx}=\frac{y}{x}-cosec(\frac{y}{x})...(1)
Let F(x,y)=yxcosec(yx).F(x,y)=\frac{y}{x}-cosec(\frac{y}{x}).
F(λx,λy)=λyλxcosec(λyλx)∴F(λx,λy)=\frac{λy}{λx}-cosec(\frac{λy}{λx})
⇒F(λx,λy)=y/x-cosec(y/x)=F(x,y)=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=vcosecvv+x\frac{dv}{dx}=v-cosec\,v
dvcosecv=dxx⇒\frac{-dv}{cosec\,v}=\frac{-dx}{x}
Integrating both sides we get:
cosv=logx+logC=logCxcos\,v=logx+logC=log|Cx|
cos(yx)=logCx...(2)⇒cos(\frac{y}{x})=log|Cx|...(2)
This is the required solution of the given differential equation.
Now,y=0 at x=1.
cos(0)=logC⇒cos(0)=logC
1=logC⇒1=logC
C=e1=e⇒C=e^1=e
Substituting C=e in equation(2),we get:
cos(yx)=log(ex)cos(\frac{y}{x})=log|(ex)|
This is the required solution of the given differential equation.