Question
Mathematics Question on Differential equations
For the differential equations, find the particular solution satisfying the given condition:[xsin2(yx)−y]dx+xdy=0;y=4π,when x=1
[xsin2(yx)−y]dx+xdy=0
⇒dxdy=x−[xsin2(xy)−y]...(1)
Let F(x,y)=x−[xsin2(xy)−y]
∴F(λx,λy)=[λx.sin2(λyλx)−λy]=x−[xsin2(xy)−y]=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve this differential equation,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+x=dxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=x−[xsin2v−vx]
⇒v+xdxdv=−[sin2v−v]=v−sin2v
⇒xdxdv=−sin2v
⇒sin2vdv=dx−dx
⇒cosec2vdv=x−dx
−cotv=−log∣x∣−C
⇒cotv=log∣x∣+C
⇒cot(xy)=log∣x∣+log∣C∣
⇒cot(xy)=log∣Cx∣...(2)
Now,y=4π at x=1
⇒cot(4π)=log∣C∣
⇒1=logC
⇒C=e1=e
Substituting C=e in equation(2),we get:
cot(xy)=log∣ex∣
This is the required solution of the given differential equation.