Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the particular solution satisfying the given condition:[xsin2(xy)y]dx+xdy=0;y=π4,[xsin^2(\frac{x}{y})-y]dx+xdy=0;y=\frac{π}{4},when x=1x=1

Answer

[xsin2(xy)y]dx+xdy=0[xsin^2(\frac{x}{y})-y]dx+xdy=0
dydx=[xsin2(yx)y]x...(1)⇒\frac{dy}{dx}=\frac{-[xsin^2(\frac{y}{x})-y]}{x}...(1)
Let F(x,y)=[xsin2(yx)y]xF(x,y)=\frac{-[xsin^2(\frac{y}{x})-y]}{x}
F(λx,λy)=[λx.sin2(λxλy)λy]=[xsin2(yx)y]x=λ°.F(x,y)∴F(λx,λy)=[λx.sin^2(\frac{λx}{λy})-λy]=\frac{-[xsin^2(\frac{y}{x})-y]}{x}=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve this differential equation,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+x=dvdx⇒\frac{dy}{dx}=v+x=\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=[xsin2vvx]xv+x\frac{dv}{dx}=\frac{-[xsin^2v-vx]}{x}
v+xdvdx=[sin2vv]=vsin2v⇒v+x\frac{dv}{dx}=-[sin^2v-v]=v-sin^2v
xdvdx=sin2v⇒x\frac{dv}{dx}=-sin^2v
dvsin2v=dxdx⇒\frac{dv}{sin^2v}=\frac{-dx}{dx}
cosec2vdv=dxx⇒cosec^2\,v\,dv=\frac{-dx}{x}
cotv=logxC-cotv=-log|x|-C
cotv=logx+C⇒cotv=log|x|+C
cot(yx)=logx+logC⇒cot(\frac{y}{x})=log|x|+log|C|
cot(yx)=logCx...(2)⇒cot(\frac{y}{x})=log|Cx|...(2)
Now,y=π4y=\frac{π}{4} at x=1
cot(π4)=logC⇒cot(\frac{π}{4})=log|C|
1=logC⇒1=logC
C=e1=e⇒C=e^1=e
Substituting C=eC=e in equation(2),we get:
cot(yx)=logexcot(\frac{y}{x})=log|ex|
This is the required solution of the given differential equation.